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Abstract
Large-scale deep learning requires huge computational re-
sources to train a multi-layer neural network. Recent systems
propose using 100s to 1000s of machines to train networks
with tens of layers and billions of connections. While the
computation involved can be done more efficiently on GPUs
than on more traditional CPU cores, training such networks
on a single GPU is too slow and training on distributed GPUs
can be inefficient, due to data movement overheads, GPU
stalls, and limited GPU memory. This paper describes a new
parameter server, called GeePS, that supports scalable deep
learning across GPUs distributed among multiple machines,
overcoming these obstacles. We show that GeePS enables
a state-of-the-art single-node GPU implementation to scale
well, such as to 13 times the number of training images pro-
cessed per second on 16 machines (relative to the original
optimized single-node code). Moreover, GeePS achieves a
higher training throughput with just four GPU machines than
that a state-of-the-art CPU-only system achieves with 108
machines.

1. Introduction
Large-scale deep learning is emerging as a primary machine
learning approach for important, challenging problems such
as image classification [7, 14, 23, 33] and speech recogni-
tion [13, 18]. In deep learning, large multi-layer neural net-
works are trained without pre-conceived models to learn com-
plex features from raw input data, such as the pixels of labeled
images. Given sufficient training data and computing power,
deep learning approaches far outperform other approaches
for such tasks.

The computation required, however, is substantial—prior
studies have reported that satisfactory accuracy requires
training large (billion-plus connection) neural networks on
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100s or 1000s of servers for days [7, 14]. Neural network
training is known to map well to GPUs [8, 23], but it has
been argued that this approach is only efficient for smaller
scale neural networks that can fit on GPUs attached to a single
machine [7]. The challenges of limited GPU memory and
inter-machine communication have been identified as major
limitations.

This paper describes GeePS, a parameter server system
specialized for scaling deep learning applications across
GPUs distributed among multiple server machines. Like pre-
vious CPU-based parameter servers [10, 24], GeePS handles
the synchronization and communication complexities asso-
ciated with sharing the model parameters being learned (the
weights on the connections, for neural networks) across paral-
lel workers. Unlike such previous systems, GeePS performs a
number of optimizations specially tailored to making efficient
use of GPUs, including pre-built indexes for “gathering” the
parameter values being updated in order to enable parallel
updates of many model parameters in the GPU, along with
GPU-friendly caching, data staging, and memory manage-
ment techniques.

GeePS supports data-parallel model training, in which
the input data is partitioned among workers on different
machines that collectively update shared model parameters
(that themselves are sharded across machines). This avoids
the excessive communication delays that would arise in
model-parallel approaches, in which the model parameters
are partitioned among the workers on different machines,
given the rich dependency structure of neural networks [33].
Data-parallel approaches are limited by the desire to fit the
entire model in each worker’s memory, and, as observed by
prior work [7, 9, 14, 22, 30, 33], this would seem to imply
that GPU-based systems (with their limited GPU memory)
are suited only for relatively small neural networks. GeePS
overcomes this apparent limitation by assuming control
over memory management and placement, and carefully
orchestrating data movement between CPU and GPU memory
based on its observation of the access patterns at each layer
of the neural network.

Experiments show that single-GPU codes can be easily
modified to run with GeePS and obtain good scalable per-
formance across multiple GPUs. For example, by modifying



Caffe [21], a state-of-the-art open-source system for deep
learning on a single GPU, to store its data in GeePS, we can
improve Caffe’s training throughput (images per second) by
13× using 16 machines. Using GeePS, less than 8% of the
GPU’s time is lost to stalls (e.g., for communication, synchro-
nization, and data movement), as compared to 65% when
using an efficient CPU-based parameter server implementa-
tion. In terms of image classification accuracy, GeePS’s rate
of improvement on 16 machines is 8× faster than the single-
GPU optimized Caffe’s. The training throughput achieved
with just four GPU machines beats that reported recently
for a state-of-the-art 108-machine CPU-only system (Pro-
jectAdam) [7], and the accuracy improvement with just 16
GPU machines is 4× faster than what was reported for a 58-
machine ProjectAdam configuration. Experiments with video
classification via recurrent neural networks show similar re-
sults. Interestingly, in contrast with recent work [7, 19, 24],
we find that for deep learning on GPUs, BSP-style execu-
tion leads to faster accuracy improvements than more asyn-
chronous parameter consistency models, because the negative
impact of staleness outweighs the benefits of reduced com-
munication delays.

Experiments also confirm the efficacy of GeePS’s support
for data-parallel training of very large neural networks on
GPUs. For example, results are shown for a 20 GB neural
network (5.6 billion connections) trained on GPUs with only
5 GB memory, with the larger CPU memory holding most of
the parameters and intermediate layer state most of the time.
By moving data between CPU memory and GPU memory in
the background, GeePS is able to keep the GPU engines busy
without suffering a significant decrease in training throughput
relative to the case of all data fitting into GPU memory.

This paper makes three primary contributions. First, it de-
scribes the first GPU-specialized parameter server design and
the changes needed to achieve efficient data-parallel multi-
machine deep learning with GPUs. Second, it reports on
large-scale experiments showing that GeePS indeed supports
scalable data parallel execution via a parameter server, in
contrast to previous expectations [7]. Third, it introduces new
parameter server support for enabling such data-parallel deep
learning on GPUs even when models are too big to fit in GPU
memory, by explicitly managing GPU memory as a cache for
parameters and intermediate layer state.

The remainder of this paper is organized as follows.
Section 2 motivates GeePS’s design with background on deep
learning, GPU architecture, and parameter servers for ML.
Section 3 describes how GeePS’s design differs from previous
CPU-based parameter server systems. Section 4 describes the
GeePS implementation. Section 5 presents results from deep
learning experiments with models of various sizes, including
comparison to a state-of-the-art CPU-based parameter server.
Section 6 discusses additional related work.

2. High performance deep learning
This section briefly describes deep learning, using image clas-
sification as a concrete example, and common approaches
to achieving good performance by using GPUs or by paral-
lelizing over 100s of traditional CPU-based machines with
a parameter server architecture. Our goal is to enable the
two approaches to be combined, with a parameter server
system that effectively supports parallelizing over multiple
distributed GPUs.

2.1 Deep learning
In deep learning, the ML programmer/user does not specify
which specific features of the raw input data correlate with
the outcomes being associated. Instead, the ML algorithm
determines which features correlate most strongly by training
a neural network with a large number of hidden layers [5],
which consists of a layered network of nodes and edges
(connections), as depicted in Figure 1.

Because deep learning is somewhat difficult to describe in
the abstract, this section instead does so by describing how it
works for the specific case of image classification [7, 14, 23,
28] and video classification [16, 34]. An image classification
network classifies images (raw pixel maps) into pre-defined
labels and is trained using a set of training images with known
labels. The video classification network classifies videos (a
sequence of image frames) into pre-defined labels, and often
uses an image classification network as a submodule. This
subsection describes an image classification network first and
then describes how a video classification network can be built
on it.

Convolutional layer

Input layer

Fully connected layer

Fully connected layer Label probabilities

Image pixels

Intermediate states

Connection weights

Figure 1. A convolutional neural network, with one convo-
lutional layer and two fully connected layers.

The image classification task often uses a type of model
called a convolutional neural network (CNN). The first layer
of the nodes (input of the network) are the raw pixels of
the input image, and the last layer of the nodes (output of
the network) are the probabilities that this image should
be assigned to each label. The nodes in the middle are
intermediate states. To classify an image using such a neural
network, the image pixels will be assigned as the values
for the first layer of nodes, and these nodes will activate
their connected nodes of the next layer. There is a weight
associated with each connection, and the value of each node
at the next layer is a prespecified function of the weighted
values of its connected nodes. Each layer of nodes is activated,



one by one, by the setting of the node values for the layer
below. This procedure is called a forward pass.

There are two types of layers: those with weights to be
trained and those with fixed functions (no weights to be
trained). Common examples of the former are fully connected
layers, in which the value of each node is a weighted sum of
all the node values at the prior level, and convolutional layers,
in which the value of each node is the result of applying a
convolution function over a (typically small) subset of the
node values.

A common way of training a neural network is to use
a stochastic gradient descent (SGD) algorithm. For each
training image, a forward pass is done to activate all nodes
using the current weights. The values computed for each
node are retained as intermediate states. At the last layer, an
error term is calculated by comparing the predicted label
probabilities with the true label. Then, the error terms are
propagated back through the network with a backward pass.
During the backward pass, the gradient of each connection
weight is calculated from the error terms and the retained
node values, and the connection weights (i.e., the model
parameters) are updated using these gradients.

For efficiency, most training applications do each forward
and backward pass with a batch of images (called a mini-
batch) instead of just one image. For each image inside the
mini-batch, there will be one set of node activation values
during the forward pass and one set of error terms during the
backward pass. Convolutional layers tend to have far fewer
weights than fully connected layers, both because there are far
fewer connections and because, by design, many connections
share the same weight.

Video classification tasks often use a structure called a
recurrent neural network (RNN). An RNN is made up of
multiple layers with recurrent (i.e. feedback) connections,
called recurrent layers, such that a static unrolling of the
RNN would be a very deep network with shared weights
between some of the layers. The Long-Short Term Memory
(LSTM) layer [20] is one popular type of recurrent layers
that is frequently used for vision and speech tasks to capture
sequence information of the data [16, 29, 34]. The LSTM
layer contains memory cells that “remember” knowledge of
previous timestamps, and the memory is updated selectively
at each timestamp, controlled by special gate functions. A
common approach for using RNNs on vision tasks, such as
video classification [16, 34] and image captioning [29], is to
stack LSTM layers on top of CNN layers. The CNN layers
serve as an encoder that converts each frame of a video into
a feature vector and feeds the video as a sequence of feature
vectors into the LSTM layers. In order to train the LSTM
layers, a complete sequence of the image frames need to be
in one mini-batch.

2.2 Deep learning using GPUs
GPUs are often used to train deep neural networks, be-
cause the primary computational steps match their single-

instruction-multiple-data (SIMD) nature and they provide
much more raw computing capability than traditional CPU
cores. Most high end GPUs are on self-contained devices
that can be inserted into a server machine, as illustrated in
Figure 2. One key aspect of GPU devices is that they have
dedicated local memory, which we will refer to as “GPU
memory,” and their computing elements are only efficient
when working on data in that GPU memory. Data stored out-
side the device, in CPU memory, must first be brought into
the GPU memory (e.g., via PCI DMA) for it to be accessed
efficiently.

DRAM

(CPU memory)

GPU device

GPU

memory

(a few GB)

GPU cores
NIC

Network

CPU cores

...

Local

storage

Figure 2. A machine with a GPU device.

Neural network training is an excellent match to the GPU
computing model. For example, the forward pass of a fully
connected layer, for which the value of each output node
is calculated as the weighted sum of all input nodes, can
be expressed as a matrix-matrix multiplication for a whole
mini-batch. During the backward pass, the error terms and
gradients can also be computed with similar matrix-matrix
multiplications. These computations can be easily decom-
posed into SIMD operations and be performed efficiently with
the GPU cores. Computations of other layers, such as con-
volution, have similar SIMD properties and are also efficient
on GPUs. NVIDIA provides libraries for launching these
computations on GPUs, such as the cuBLAS library [1] for
basic linear algebra computations and the cuDNN library [2]
for neural-network specific computations (e.g., convolution).

Caffe [21] is an open-source deep learning system that
uses GPUs. In Caffe, a single-threaded worker launches and
joins with GPU computations, by calling NVIDIA cuBLAS
and cuDNN libraries, as well as some customized CUDA
kernels. Each mini-batch of training data is read from an
input file via the CPU, moved to GPU memory, and then
processed as described above. For efficiency, Caffe keeps all
model parameters and intermediate states in the GPU memory.
As such, it is effective only for models and mini-batches small
enough to be fully held in GPU memory. Figure 3 illustrates
the CPU and GPU memory usage for a basic Caffe scenario.

2.3 Scaling ML with a parameter server
While early parallel ML implementations used direct message
passing (e.g., via MPI) among threads for update exchanges, a
parameter server architecture has become a popular approach
to making it easier to build and scale ML applications
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Figure 3. Single GPU ML, such as with default Caffe.

across CPU-based clusters [3, 4, 7, 10, 11, 14, 19, 25, 31,
36], particularly for data-parallel execution. Indeed, two of
the largest efforts to address deep learning have used this
architecture [7, 14].

Figure 4 illustrates the basic parameter server architec-
ture. All state shared among application workers (i.e., the
model parameters being learned) is kept in distributed shared
memory implemented as a specialized key-value store called
a “parameter server”. An ML application’s workers process
their assigned input data and use simple Read and Update

methods to fetch or apply a delta to parameter values, leaving
the communication and consistency issues to the parameter
server. The value type is often application defined, but is re-
quired to be serializable and be defined with an associative
and commutative aggregation function, such as plus or multi-
ply, so that updates from different workers can be applied in
any order. In our image classification example, the value type
could be an array of floating point values and the aggregation
function could be plus.

Parameter cache

...Worker Worker

Machine

...

Parameter Server

Parameter data

Parameter cache

...Worker Worker

Machine

Figure 4. Parallel ML with parameter server.

To reduce remote communication, a parameter server sys-
tem includes client-side caches that serve most operations
locally. While some systems rely entirely on best-effort asyn-
chronous propagation of parameter updates, many include an
explicit Clock method to identify a point (e.g., the end of an
iteration or mini-batch) at which a worker’s cached updates
should be pushed to the shared key-value store and its local
cache state should be refreshed. The consistency model can
conform to the Bulk Synchronous Parallel (BSP) model, in
which all updates from the previous clock must be visible
before proceeding to the next clock, or can use a looser but
still bounded model. For example, the Stale Synchronous

Parallel (SSP) model [10, 19] allows the fastest worker to be
ahead of the slowest worker by a bounded number of clocks.
Both models have been shown to converge, experimentally
and theoretically, with different tradeoffs.

While the picture illustrates the parameter server as sepa-
rate from the machines executing worker threads, and some
systems do work that way, the server-side parameter server
state is commonly sharded across the same machines as the
worker threads. The latter approach is particularly appro-
priate when considering a parameter server architecture for
GPU-based ML execution, since the CPU cores and CPU
memory is otherwise used only for input data buffering and
preparation.

Given its proven value in CPU-based distributed ML, it
is natural to use the same basic architecture and program-
ming model with distributed ML on GPUs. To explore its
effectiveness, we ported two applications (the Caffe system
discussed above and a multi-class logistic regression (MLR)
program) to a state-of-the-art parameter server system (Iter-
Store [11]). Doing so was straightforward and immediately
enabled distributed deep learning on GPUs, confirming the
application programmability benefits of the data-parallel pa-
rameter server approach. Figure 5 illustrates what sits where
in memory, to allow comparison to Figure 3 and designs
described later.
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Figure 5. Distributed ML on GPUs using a CPU-based
parameter server. The right side of the picture is much like the
single-GPU illustration in Figure 3. But, a parameter server shard
and client-side parameter cache are added to the CPU memory, and
the parameter data originally only in the GPU memory is replaced
in GPU memory by a local working copy of the parameter data.
Parameter updates must be moved between CPU memory and GPU
memory, in both directions, which requires an additional application-
level staging area since the CPU-based parameter server is unaware
of the separate memories.

While it was easy to get working, the performance was not
acceptable. As noted by Chilimbi et al. [7], the GPU’s com-
puting structure makes it “extremely difficult to support data
parallelism via a parameter server” using current implementa-
tions, because of GPU stalls, insufficient synchronization/con-
sistency, or both. Also as noted by them and others [30, 33],
the need to fit the full model, as well as a mini-batch of input
data and intermediate neural network states, in the GPU mem-



ory limits the size of models that can be trained. The next
section describes our design for overcoming these obstacles.

3. GPU-specialized parameter server design
This section describes three primary specializations to a
parameter server to enable efficient support of parallel ML
applications running on distributed GPUs: explicit use of
GPU memory for the parameter cache, batch-based parameter
access methods, and parameter server management of GPU
memory on behalf of the application. The first two address
performance, and the third expands the range of problem sizes
that can be addressed with data-parallel execution on GPUs.
Also discussed is the topic of execution model synchrony,
which empirically involves a different choice for data-parallel
GPU-based training than for CPU-based training.

3.1 Maintaining the parameter cache in GPU memory
One important change needed to improve parameter server
performance for GPUs is to keep the parameter cache in GPU
memory, as shown in Figure 6. (Section 3.3 discusses the case
where everything does not fit.) Perhaps counter-intuitively,
this change is not about reducing data movement between
CPU memory and GPU memory—the updates from the local
GPU must still be moved to CPU memory to be sent to other
machines, and the updates from other machines must still be
moved from CPU memory to GPU memory. Rather, moving
the parameter cache into GPU memory enables the parameter
server client library to perform these data movement steps
in the background, overlapping them with GPU computing
activity. Then, when the application uses the read or update
functions, they proceed within the GPU memory. Putting the
parameter cache in GPU memory also enables updating of
the parameter cache state using GPU parallelism.
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Figure 6. Parameter cache in GPU memory. In addition to the
movement of the parameter cache box from CPU memory to GPU
memory, this illustration differs from Figure 5 in that the associated
staging memory is now inside the parameter server library. It is used
for staging updates between the network and the parameter cache,
rather than between the parameter cache and the GPU portion of the
application.

3.2 Pre-built indexes and batch operations
Given the SIMD-style parallelism of GPU devices, per-value
read and update operations of arbitrary model parameter val-
ues can significantly slow execution. In particular, perfor-
mance problems arise from per-value locking, index lookups,
and data movement. To realize sufficient performance, our
GPU-specialized parameter server supports batch-based in-
terfaces for reads and updates. Moreover, GeePS exploits
the iterative nature of model training [11] to provide batch-
wide optimizations, such as pre-built indexes for an entire
batch that enable GPU-efficient parallel “gathering” and up-
dating of the set of parameters accessed in a batch. These
changes make parameter server accesses much more efficient
for GPU-based training.

3.3 Managing limited GPU device memory
As noted earlier, the limited size of GPU device memory
was viewed as a serious impediment to data-parallel CNN
implementations, limiting the size of the model to what could
fit in a single device memory. Our parameter server design
addresses this problem by managing the GPU memory for
the application and swapping the data that is not currently
being used to CPU memory. It moves the data between GPU
and CPU memory in the background, minimizing overhead
by overlapping the transfers with the training computation,
and our results demonstrate that the two do not interfere with
one another.

Managing GPU memory inside the parameter server.
Our GPU-specialized parameter server design provides read
and update interfaces with parameter-server-managed buffers.
When the application reads parameter data, the parameter
server client library will allocate (user-level allocation im-
plemented by the parameter server) a buffer in GPU memory
for it and return the pointer to this buffer to the applica-
tion, instead of copying the parameter data to an application-
provided buffer. When the application finishes using the pa-
rameter data, it returns the buffer to the parameter server. We
call those two interfaces Read and PostRead. When the ap-
plication wants to update parameter data, it will first request
a buffer from the parameter server using PreUpdate and use
this buffer to store its updates. The application calls Update
to pass that buffer back, and the parameter server library will
apply the updates stored in the buffer and reclaim the buffer
memory.

The application can also store their local non-parameter
data (e.g., intermediate states) in the parameter server using
similar interfaces. The local data will not be shared with the
other application workers, so accessing the local data will be
much faster than accessing the parameter data. For example,
when the application reads the local data, the parameter
server will just return a pointer that points to the stored
local data, without copying it to a separate buffer. Similarly,
the application can directly modify the requested local data,
without needing to issue an explicit Update operation.



Method name Input Description Blocking
Read list of keys and data staleness bound request a buffer, filled with parameter data yes
PostRead buffer from Read call release the buffer no
PreUpdate list of keys request an empty buffer, structured for parameter data yes
Update buffer from PreUpdate call release the buffer and save the updates no
LocalAccess list of keys for local data request a buffer, (by default) filled with local data yes
PostLocalAccess buffer from LocalAccess call release the buffer and (by default) save the data in it no
TableClock table ID commit all updates to one table no

Table 1. GeePS API calls used for access to parameter data and GeePS-managed local data.

Swapping data to CPU memory when it does not fit.
The parameter server client library will be able to manage
all the GPU memory on a machine, if the application keeps
all its local data in the parameter server and uses the PS-
managed buffers. When the GPU memory of a machine is not
big enough to host all data, the parameter server will store
part of the data in the CPU memory. The application still
accesses everything through GPU memory, as before, and
the parameter server library will do the data movement for
it. When the application Reads parameter data that is stored
in CPU memory, the parameter server will perform this read
using CPU cores and copy the data from CPU memory to an
allocated GPU buffer, likewise for local data Reads. Figure 7
illustrates the resulting data layout in the GPU and CPU
memories.

Pinned local data
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Parameter 

server shard 0
Staging memory for 
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GPU memoryCPU memory

Network

Access buffer pool
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(CPU part)

Parameter cache

(CPU part)

Pinned param cache

Input data file
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Figure 7. Parameter cache and local data partitioned across
CPU and GPU memories. When all parameter and local data
(input data and intermediate data) cannot fit within GPU memory,
our parameter server can use CPU memory to hold the excess.
Whatever amount fits can be pinned in GPU memory, while the
remainder is transferred to and from buffers that the application can
use, as needed.

GPU/CPU data movement in the background. Copy-
ing data between GPU and CPU memory could significantly
slow down data access. To minimize slowdowns, our param-
eter server uses separate threads to perform the Read and
Update operations in the background. For an Update oper-
ation, because the parameter server owns the update buffer,
it can apply the updates in the background and reclaim the
update buffer after it finishes. In order to perform the Read
operations in the background, the parameter server will need
to know in advance the sets of parameter data that the ap-

plication will access. Fortunately, iterative applications like
neural network training typically apply the same parameter
data accesses every iteration [11], so the parameter server
can easily predict the Read operations and perform them in
advance in the background.

3.4 Eschewing asynchrony
Many recent ML model training systems, including for neural
network training, use a parameter server architecture to
share state among data-parallel workers executing on CPUs.
Consistent reports indicate that, in such an architecture,
some degree of asynchrony (bounded or not) in parameter
update exchanges among workers leads to significantly faster
convergence than when using BSP [3, 7, 10, 14, 19, 24,
32]. We observe the opposite with data-parallel workers
executing on GPUs—while synchronization delays can be
largely eliminated, as expected, convergence is much slower
with the more asynchronous models because of reduced
training quality. This somewhat surprising observation is
supported and discussed further in Section 5.4.

4. GeePS implementation
This section describes GeePS, a GPU-specialized parameter
server system that implements the design aspects described
in Section 3.

4.1 GeePS data model and API
GeePS is a C++ library that manages both the parameter data
and local data for GPU-based machine learning applications
(such as Caffe). The distributed application program usually
creates one ML worker process on each machine and each of
them links to one instance of the GeePS library. Algorithm 1
gives an example structure of a deep learning application
using GeePS. The ML application worker often runs in a
single CPU thread that launches NVIDIA library calls or
customized CUDA kernels to perform computations on GPUs,
and it calls GeePS functions to access and release GeePS-
managed data. The GeePS APIs are summarized in Table 1.

GeePS manages all data as a collection of rows indexed
by keys. The rows are then logically grouped into tables, and
rows in the same table share the same attributes (e.g., data
age). In our current implementation, each row is defined as
a fixed sized array of float values, allowing efficient cross-
machine communication without any marshalling. In our



deep learning application, because the model parameters (i.e.,
connection weights of each layer) can have different sizes,
we store each model parameter as multiple rows in the same
table.

GeePS implements the read and update operations with
PS-managed buffers for parameter data access, and a pair of
operations for local data access, with which the application
can directly modify the accessed local data without an ex-
plicit update operation. GeePS also provides a TableClock
operation for application workers to signal the completion of
per-table updates, and the data age of a table (and the rows
in it) is defined as the number of times that the TableClock
operation is called on that table by all workers. Among all the
API calls, Read, PreUpdate, and LocalAccess are block-
ing, forcing the application worker to wait when data or buffer
space is not ready, and the other calls are all asynchronous
and return immediately. By making the application worker
wait on Read, GeePS supports three execution synchrony
models: BSP, SSP [19], and Asynchrony.

Some of our specializations (pre-built indices, background
Read, and data placement decisions) exploit knowledge of the
operation sequence of the application. Previous work shows
that one can easily get such operation sequence information
from many iterative ML applications (including deep learn-
ing), because they do the same (or nearly the same) sequence
of operations every iteration [11]. GeePS implements an op-
eration sequence gathering mechanism like that described by
Cui et al. [11]. It can gather the operation sequence either
in the first iteration or in a virtual iteration. For example,
in Algorithm 1, before the real training iterations start, the
application performs a virtual iteration, with all GeePS calls
being marked with a virtual flag, so that the operations are
only recorded by GeePS but no real actions are taken. GeePS
uses the gathered operation sequence knowledge as a hint
to build the data structures, build the access indices, make
GPU/CPU data placement decisions, and perform prefetching.
Since the gathered access information is used only as a hint,
knowing the exact operation sequence is not a requirement
for correctness, but a performance optimization.1

4.2 GeePS architecture
Storing data. GeePS shards the parameter data across all
instances, and each GeePS instance stores one shard of the
parameter data in its parameter server shard. The parameter
server shards are not replicated, and fault tolerance is handled
by checkpointing. In order to reduce communication traffic,
each instance has a parameter cache that stores a local

1 For most DNN applications (including CNN and RNN), the application
accesses all model parameters every mini-batch, so the gathered information
is exact. For some applications with sparse training data (e.g., BOW
representation for NLP tasks), the bottom layer of the network might just
use a subset of the weights. Even for these tasks, the operation sequence
of a whole epoch still repeats. The operation sequence only changes when
the training data is shuffled across epochs, and, for this special case, we can
choose to prefetch all the parameter data that can possibly be used, when
there is enough memory.

Algorithm 1 A DNN application with GeePS
L← number of layers in the network
paramDataKeys← decide row keys for param data
localDataKeys← decide row keys for local data
# Report access information with a virtual iteration
TRAINMINIBATCH(null, virtual = yes)
# Real training iterations
while not done do

TRAINMINIBATCH(nextTrainData, virtual = false)
end while
function TRAINMINIBATCH(trainData, virtual)

# Forward pass
for i = 0 ∼ (L− 1) do

paramDataPtr ←
geeps.Read(paramDataKeysi, virtual)
localDataP tr ←
geeps.LocalAccess(localDataKeysi, virtual)

if not virtual then
Setup layeri with data pointers
Forward computation of layeri

end if
geeps.PostRead(paramDataPtr)
geeps.PostLocalAccess(localDataP tr)

end for
# Backward pass
for i = (L− 1) ∼ 0 do

paramDataPtr ←
geeps.Read(paramDataKeysi, virtual)
paramUpdateP tr ←
geeps.PreUpdate(paramDataKeysi, virtual)
localDataP tr ←
geeps.LocalAccess(localDataKeysi, virtual)

if not virtual then
Setup layeri with data pointers
Backward computation of layeri

end if
geeps.PostRead(paramDataPtr)
geeps.Update(paramUpdateP tr)
geeps.PostLocalAccess(localDataP tr)
geeps.TableClock(table = i, virtual)

end for
end function

snapshot of the parameter data, and the parameter cache
is refreshed from the parameter server shards, such as at
every clock for BSP. When the application applies updates
to the parameter data, those updates are also stored in the
parameter cache (a write-back cache) and will be submitted
to the parameter server shards at the end of every clock
(when a TableClock is called). The parameter cache has two
parts, a GPU-pinned parameter cache and a CPU parameter
cache. If everything fits in GPU memory, only the GPU
parameter cache is used. But, if the GPU memory is not big
enough, GeePS will keep some parameter data in the CPU
parameter cache. (The data placement policies are described
in Section 4.4.) Each GeePS instance also has an access buffer
pool in GPU memory, and GeePS allocates GPU buffers for
Read and PreUpdate operations from the buffer pool. When
PostRead or Update operations are called, the memory will
be reclaimed by the buffer pool. GeePS manages application’s
input data and intermediate states as local data. The local
data also has a GPU-pinned part and a CPU part, with the



CPU part only used if necessary. GeePS divides the key space
into multiple partitions, and the rows in different partitions
are physically managed in different data structures and with
different sets of communication threads.

Data movement across machines. GeePS performs com-
munication across machines asynchronously with three types
of background threads: keeper threads manage the parameter
data in parameter server shards; pusher threads send parame-
ter data updates from parameter caches to parameter server
shards, by sending messages to keeper threads; puller threads
receive parameter data from parameter server shards to pa-
rameter caches, by receiving messages from keeper threads.

The communication is implemented using sockets, so the
data needs to be copied to some CPU staging memory before
being sent through the network, and the received data will also
be in the CPU staging memory. The pusher/puller threads
perform data movement between CPU memory and GPU
memory using CUDA APIs.

Data movement inside a machine. GeePS uses two back-
ground threads to perform the data access operations for
the application workers. The allocator thread performs the
Read, PreUpdate, and LocalAccess operations by allo-
cating buffers from the buffer pool and copying the re-
quested data to the buffers. The reclaimer thread performs the
PostRead, Update, and PostLocalAccess operations by
saving the data to parameter cache or local store and reclaim-
ing the buffers back to the buffer pool. These threads assign
and update parameter data in large batches with pre-built
indices by launching CUDA kernels on GPUs, as described
in Section 4.3.

Synchronization and data freshness guarantees. GeePS
supports BSP, asynchrony, and the Staleness Synchronous
Parallel (SSP) model [19], wherein a worker at clock t is
guaranteed to see all updates from all workers up to clock
t − 1 − slack, where the slack parameter controls the data
freshness. SSP with a slack of zero is the same as BSP.

To enforce SSP bounds, each parameter server shard
keeps a vector clock for each table, where each vector
clock entry stores the number of times each worker calls
the TableClock operation on that table. The data age of
each table in a parameter server shard is the minimal value
of the corresponding vector clock. The parameter cache also
keeps the data age information with the cached data, and the
allocator thread is blocked when the data is not fresh enough.

Locking. GeePS’s background threads synchronize with
each other, as well as the application threads, using mutex
locks and condition variables. Unlike some other CPU-based
parameter servers that use per-row locks [10, 11, 32], we
employ a coarse-grained locking design, where one set of
mutex lock and condition variable is used for a whole key
partition. We make this design decision for two reasons. First,
with coarse-grained locking, batched data operations can be
easily performed on a whole partition of rows. Second, unlike
CPU applications, where one application thread is launched

for each CPU core, a GPU application often has just one CPU
host thread interacting with each GeePS instance, making
lock contention less of an issue.

4.3 Parallelizing batched access
GeePS provides a key-value store interface to the appli-
cation, where each parameter row is named by a unique
key. When the application issues a read or update opera-
tion (for accessing a set of model parameters), it will pro-
vide a list of keys for the target rows. GeePS could use
a hash map to map the row keys to the locations where
the rows are stored. But, in order to make the batched ac-
cess be executed by all GPU cores, GeePS will use the fol-
lowing mechanism. Suppose the application update n rows,
each with m floating point values, in one Update opera-
tion, it will provide an array of n parameter row updates
{{updates[i][j]}mj=1}ni=1, and (provided in PreUpdate) an
array of n keys {keys[i]}ni=1. GeePS will use an index with n
entries, where each of {index[i]}ni=1 stores the location of the
cached parameter update. Then, it will do the following data
operation for this Update: {{parameters[index[i]][j] +=
updates[i][j]}mj=1}ni=1. This operation can be executed with
all the GPU cores. Moreover, the index can be built just once
for each batch of keys, based on the operation sequence gath-
ered as described earlier, and re-used for each instance of the
given batch access.

4.4 GPU memory management
GeePS keeps the GPU-pinned parameter cache, GPU-pinned
local data, and access buffer pool in GPU memory. They
will be all the GPU memory allocated in a machine if the
application keeps all its input data and intermediate states in
GeePS and uses the GeePS-managed buffers. GeePS will pin
as much parameter data and local data in GPU memory as
possible. But, if the GPU memory is not large enough, GeePS
will keep some of the data in CPU memory (the CPU part of
the parameter cache and/or CPU part of the local data).

In the extreme case, GeePS can keep all parameter data
and local data in the CPU memory. But, it will still need the
buffer pool to be in the GPU memory, and the buffer pool
needs to be large enough to keep all the actively used data
even at peak usage. We refer to this peak memory usage as
peak size. In order to perform the GPU/CPU data movement
in the background, GeePS does double buffering by making
the buffer pool twice as large as the peak size.

Data placement policy. We will now describe our policy
for choosing which data to pin in GPU memory. In our
implementation, any local data that is pinned in GPU memory
does not need to use any access buffer space. The allocator
thread will just give the pointer to the pinned GPU local
data to the application, without copying the data. For the
parameter data, even though it is pinned in GPU memory,
the allocator thread still needs to copy it from the parameter
cache to an access buffer, because the parameter cache could
be modified by the background communication thread (the



puller thread) while the application is doing computation. As
a result, pinning local data in GPU memory gives us more
benefit than pinning parameter cache data. Moreover, if we
pin the local data that is used at the peak usage, we can reduce
the peak access buffer usage, because it does not need the
buffer, allowing us to reserve less memory for the access
buffer.

Algorithm 2 GPU/CPU data placement policy
Input: {paramData}, {localData} ← entries of all parameter data
and local data accessed at each layer
Input: totalMem← the amount of GPU memory to use
# Start with everything in CPU memory
{cpuMem} ← {paramData} ∪ {localData}
{gpuMem} ← ∅
# Set access buffer twice the peak size for double buffering
peakSize← peak data usage, excluding GPU local data
bufferSize← 2× peakSize
availMem← totalMem− bufferSize
# First pin local data used at peak
while ∃data ∈ {localData} ∩ {cpuMem} ∩ {peakLayer} do

peakSizeDelta←
peakSize change if data is moved to {gpuMem}

memSizeDelta← size(data) + 2× peakSizeDelta
if availMem < memSizeDelta then

break
end if
Move data from {cpuMem} to {gpuMem}
availMem← availMem−memSizeDelta

end while
# Pin more local data using the available memory
for each data ∈ {localData} ∩ {cpuMem} do

if availMem ≥ size(data) then
Move data from {cpuMem} to {gpuMem}
availMem← availMem− size(data)

end if
end for
# Pin parameter data using the available memory
for each data ∈ {paramData} ∩ {cpuMem} do

if availMem ≥ size(paramData) then
Move data from {cpuMem} to {gpuMem}
availMem← availMem− size(data)

end if
end for
# Dedicate the remaining available memory to the access buffer
Increase bufferSize by availMem

Algorithm 2 illustrates our GPU/CPU data placement
policy, and it only runs at the setup stage, after the access
information is gathered. The algorithm chooses the entries to
pin in GPU memory based on the gathered access information
and a given GPU memory budget. While keeping the access
buffer pool twice the peak size for double buffering, our
policy will first try to pin the local data that is used at the peak
in GPU memory, in order to reduce the peak size and thus the
size of the buffer pool. Then, it will try to use the available
capacity to pin more local data and parameter cache data in
GPU memory. Finally, it will add any remaining available
GPU memory to the access buffer.

Avoiding unnecessary data movement. When the appli-
cation accesses/post-accesses the local data that is stored
in CPU memory, by default, the allocator/reclaimer thread

will need to copy the data between the CPU memory and
the allocated GPU memory. However, sometimes this data
movement is not necessary. For example, when we train a
deep neural network, the input data and intermediate data
are overwritten every new mini-batch, and the old values
from the last mini-batch can be safely thrown away. To avoid
this unnecessary data movement, we allow the application
to specify a no-fetch flag when calling LocalAccess, and
it tells GeePS to just allocate an uninitialized piece of GPU
memory, without fetching the data from CPU memory. Sim-
ilarly, when the application calls PostLocalAccess with a
no-save flag, GeePS will just free the GPU memory, without
saving the data to CPU memory.

5. Evaluation
This section evaluates GeePS’s support for parallel deep learn-
ing over distributed GPUs, using two recent image classifica-
tion models and a video classification model executed in the
original and modified Caffe application. The evaluation con-
firms four main findings: (1) GeePS provides effective data-
parallel scaling of training throughput and training conver-
gence rate, at least up to 16 machines with GPUs. (2) GeePS’s
efficiency is much higher, for GPU-based training, than a tra-
ditional CPU-based parameter server and also much higher
than parallel CPU-based training performance reported in the
literature. (3) GeePS’s dynamic management of GPU memory
allows data-parallel GPU-based training on models that are
much larger than used in state-of-the-art deep learning for im-
age classification and video classification. (4) For GPU-based
training, unlike for CPU-based training, loose consistency
models (e.g., SSP and asynchronous) significantly reduce
convergence rate compared to BSP. Fortunately, GeePS’s ef-
ficiency enables significant scaling benefits even with larger
BSP-induced communication delays.

A specific non-goal of our evaluation is comparing the
classification accuracies of the different models. Our focus is
on enabling faster training of whichever model is being used,
which is why we measure performance for several.

5.1 Experimental setup
Application setup. We use Caffe [21], the open-source
single-GPU convolutional neural network application dis-
cussed earlier.2 Our experiments use unmodified Caffe to
represent the optimized single-GPU case and a minimally
modified instance (GeePS-Caffe) that uses GeePS for data-
parallel execution. GeePS-Caffe uses GeePS to manage all
its parameter data and local data (including input data and
intermediate data), using the same structure as illustrated in
Algorithm 1. The parameter data of each layer is stored as
rows of a distinct GeePS table, allowing GeePS to propagate

2 For the image classification application, we used the version of Caffe
from https://github.com/BVLC/caffe as of June 19, 2015. Since their
master branch version does not support RNN, for the video classification
application, we used the version from https://github.com/LisaAnne/

lisa-caffe-public/tree/lstm_video_deploy as of Nov 9, 2015.

https://github.com/BVLC/caffe
https://github.com/LisaAnne/lisa-caffe-public/tree/lstm_video_deploy
https://github.com/LisaAnne/lisa-caffe-public/tree/lstm_video_deploy


the each layer’s updates during the computations of other
layers, as suggested by Zhang et al. [35]. Each GeePS row is
configured to be an array of 128 float values.

Cluster setup. Each machine in our cluster has one
NVIDIA Tesla K20C GPU, which has 5 GB of GPU device
memory. In addition to the GPU, each machine has four
2-die 2.1 GHz 16-core AMD R© Opteron 6272 packages
and 128 GB of RAM. Each machine is installed with 64-
bit Ubuntu 14.04, CUDA toolkit 7.5, and cuDNN v2. The
machines are inter-connected via a 40 Gbps Ethernet interface
(12 Gbps measured via iperf), and Caffe reads the input
training data from remote file servers via a separate 1 Gbps
Ethernet interface.

Image classification datasets and models. The experi-
ments use two datasets for image classification. The first one
is the ImageNet22K dataset [15], which contains 14 million
images labeled to 22,000 classes. Because of the computation
work required to train such a large dataset, CPU-based sys-
tems running on this dataset typically need a hundred or more
machines and spend over a week to reach convergence [7]. We
use half of the images (7 million images) as the training set
and the other half as the testing set, which is the same setup
as described by Chilimbi et al. [7]. For the ImageNet22K
dataset, we use a similar model to the one used to evaluate
ProjectAdam [7], which we refer to as the AdamLike model.3

The AdamLike model has five convolutional layers and three
fully connected layers. It contains 2.4 billion connections for
each image, and the model parameters are 470 MB in size.

The second dataset we used is Large Scale Visual Recogni-
tion Challenge 2012 (ILSVRC12) [26]. It is a subset of the Im-
ageNet22K dataset, with 1.3 million images labeled to 1000
classes. For this dataset, we use the GoogLeNet model [28], a
recent inception model from Google. The network has about
100 layers, and 22 of them have model parameters. Though
the number of layers is large, the model parameters are only
57 MB in size, because they use mostly convolutional layers.

Video classification datasets and models. We use the
UCF-101 dataset [27] for our video classification experiments.
UCF-101 has about 8,000 training videos and 4,000 testing
videos categorized into 101 human action classes. We use a
recurrent neural network model for this application, following
the approach described by Donahue et al. [16]. We use the
GoogLeNet network as the CNN layers and stack LSTM
layers with 256 hidden units on top of them. The weights of
the GoogLeNet layers have been pre-trained with the single
frames of the training videos. Following the same approach
as is described by Donahue et al. [16], we extract the video
frames at a rate of 30 frames per second and train the model
with randomly selected video clips of 32 frames each.

3 We were not able to obtain the exact model that ProjectAdam used, so
we emulated it based on the descriptions in the paper. Our emulated model
has the same number and types of layers and connections, and we believe
our training performance evaluations are representative even if the resulting
model accuracy may not be.

Training algorithm setup. Both the unmodified and the
GeePS-hosted Caffe train the models using the SGD algo-
rithm with a momentum of 0.9. Unless otherwise specified,
we use the configurations listed in Table 2. Our experiments
in Section 5.3 evaluate performance with different mini-batch
sizes. For AdamLike and GoogLeNet network, we used the
same learning rate for both single-machine training and dis-
tributed training, because we empirically found that this learn-
ing rate is the best setting for both. For the RNN model, we
used a different learning rate for single-machine training,
because it leads to faster convergence.

Model Mini-batch size
(per machine) Learning rate

AdamLike 200 images
0.0036,

divided by 10 every 3 epochs

GoogLeNet 32 images
0.0036,

divided by 10 every 150 epochs

RNN
1 video,

32 frames each

0.0000125 for 8 machines,
0.0001 for single-machine,

divided by 10 every 20 epochs

Table 2. Model training configurations.

GeePS setup. Unless otherwise specified, we let GeePS
keep the parameter cache and local data in GPU memory
for our experiments, since it all fits for all of the models
used; Section 5.3 evaluates performance when keeping part
of the data in CPU memory, including for a very large model
scenario. Unless otherwise specified, the BSP mode is used;
Section 5.4 analyzes the effect of looser synchronization
models.

5.2 Scaling deep learning with GeePS
This section evaluates how well GeePS supports data-parallel
scaling of GPU-based training on both image classification
and video classification application. We compare GeePS with
three classes of systems: (1) Single-GPU optimized training:
the original unmodified Caffe system (referred to as “Caffe”)
represents training optimized for execution on a single GPU.
(2) GPU workers with CPU-based parameter server: multiple
instances of the modified Caffe linked via IterStore [11] a
state-of-the-art CPU-based parameter server (“CPU-PS”). (3)
CPU workers with CPU-based parameter server: reported
performance numbers from recent literature are used to put
the GPU-based performance into context relative to state-of-
the-art CPU-based deep learning.

Image classification. Figure 8 shows the training through-
put scalability of the image classification application, in terms
of both the number of images trained per second and the num-
ber of network connections trained per second. Note that there
is a linear relationship between those two metrics. GeePS
scales almost linearly when we add more machines. Com-
pared to the single-machine optimized Caffe, GeePS achieves
13× speedups on both GoogLeNet and AdamLike model
with 16 machines. Compared to CPU-PS, GeePS achieves
over 2× more throughput. The GPU stall time of GeePS is
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(a) AdamLike model on ImageNet22K dataset.
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Figure 8. Image classification throughput scalability. Both
GeePS and CPU-PS run in the BSP mode.

only 8% for both GoogLeNet and AdamLike model, so 92%
of the total runtime is spent on the application’s computa-
tional work. While using CPU-PS, the GPU stall time is 51%
and 65% respectively.

Chilimbi et al. [7] report that ProjectAdam trains 570 bil-
lion connections per second on the ImageNet22K dataset
when with 108 machines (88 CPU-based worker machines
with 20 parameter server machines) [7]. Figure 8(a) shows
that GeePS achieves higher throughput with only 4 GPU
machines, because of its efficient data-parallel execution on
GPUs.

Figure 9 shows the image classification top-1 testing
accuracies of the trained models. The top-1 classification
accuracy is defined as the fraction of the testing images that
are correctly classified. To evaluate convergence speed, we
will compare the amount of time required to reach a given
level of accuracy, which is a combination of image training
throughput and model convergence per trained image. For the
AdamLike model on the ImageNet22K dataset, Caffe needs
26.9 hours to reach 10% accuracy, while GeePS needs only
4.6 hours with 8 machines (6× speedup) or 3.3 hours with
16 machines (8× speedup). For the GoogLeNet model on
the ILSVRC12 dataset, Caffe needs 13.7 hours to reach 30%
accuracy, while GeePS needs only 2.8 hours with 8 machines
(5× speedup) or 1.8 hours with 16 machines (8× speedup).
The model training time speedups compared to the single-
GPU optimized Caffe are lower than the image training
throughput speedups, as expected, because each machine
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(b) GoogLeNet model on ILSVRC12 dataset.

Figure 9. Image classification top-1 accuracies.

determines gradients independently. Even using BSP, more
training is needed than with a single worker to make the
model converge. But, the speedups are still substantial.

For the AdamLike model on the ImageNet22K dataset,
Chilimbi et al. [7] report that ProjectAdam needs one day
to reach 13.6% accuracy with 58 machines (48 CPU-based
worker machines with 10 parameter server machines). GeePS
needs only 6 hours to reach the same accuracy with 16 ma-
chines (about 4× speedup). To reach 13.6% accuracy, the
DistBelief system trained (a different model) with 2,000 ma-
chines for a week [14].

Because both GeePS and CPU-PS run in the BSP mode,
with the same number of machines, the accuracy improve-
ment speedups of GeePS over CPU-PS are the same as the
throughput speedups, so we leave them out of the graphs.

Video classification. Figure 10(a) shows the training
throughput of the video classification application. GeePS
scales linearly from Caffe (8× throughput with 8 machines).
Figure 10(b) shows the top-1 testing accuracies. To reach 60%
accuracy, Caffe used 3.6 hours, while GeePS with 8 machines
used 0.5 hours (7× speedup); to reach 68% accuracy, Caffe
used 8.4 hours, while GeePS with 8 machines used 2.4 hours
(3.5× speedup).

5.3 Dealing with limited GPU memory
An oft-mentioned concern with data-parallel deep learning
on GPUs is that it can only be used when the entire model,
as well as all intermediate state and the input mini-batch, fit
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Figure 10. Video classification scalability.

in GPU memory. GeePS eliminates this limitation with its
support for managing GPU memory and using it to buffer
data from the much larger CPU memory. Although all of
the models we experiment with (and most state-of-the-art
models) fit in our GPUs’ 5 GB memories, we demonstrate the
efficacy of GeePS’s mechanisms in two ways: by using only a
fraction of the GPU memory for the largest case (AdamLike)
and by experimenting with a much larger synthetic model.
We also show that GeePS’s memory management support
allows us to do video classification on longer videos.

Artificially shrinking available GPU memory. With a
mini-batch of 200 images per machine, training the Adam-
Like model on the ImageNet22K dataset requires only
3.67 GB memory per machine, with 123 MB for input data,
2.6 GB for intermediate states, and 474 MB each for parame-
ter data and computed parameter updates. Note that the sizes
of the parameter data and parameter updates are determined
by the model, while the input data and intermediate states
grow linearly with the mini-batch size. For best throughput,
GeePS also requires use of an access buffer that is large
enough to keep the actively used parameter data and parame-
ter updates at the peak usage, which is 528 MB minimal and
1.06 GB for double buffering (the default) to maximize over-
lapping of data movement with computation. So, in order to
keep everything in GPU memory, the GeePS-based training
needs 4.73 GB of GPU memory.

Recall, however, that GeePS can manage GPU memory
usage such that only the data needed for the layers being
processed at a given point need to be in GPU memory.
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Figure 11. Per-layer memory usage of AdamLike model on
ImageNet22K dataset.

Figure 11 shows the per-layer memory usage for training
the AdamLike model, showing that it is consistently much
smaller than the total memory usage. The left Y axis shows
the absolute size (in GB) for a given layer, and the right Y
axis shows the fraction of the absolute size over the total
size of 4.73 GB. Each bar is partitioned into the sizes of
input data, intermediate states, parameter data, and parameter
updates for the given layer. Most layers have little or no
parameter data, and most of the memory is consumed by the
intermediate states for neuron activations and error terms.
The layer that consumes the most memory uses about 17%
of the total memory usage, meaning that about 35% of the
4.73 GB is needed for full double buffering.
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Figure 12. Throughput of AdamLike model on Ima-
geNet22K dataset with different GPU memory budgets.

Figure 12 shows data-parallel training throughput using 8
machines, when we restrict GeePS to using different amounts
of GPU memory to emulate GPUs with smaller memories.
When there is not enough GPU memory to fit everything,
GeePS must swap data to CPU memory. For the case of 200
images per batch, when we swap all data in CPU memory,
we need only 35% of the GPU memory compared to keeping
all data in GPU memory, but we are still able to get 73% of
the throughput.

When the GPU memory limits the scale, people are often
forced to use smaller mini-batch sizes to let everything fit
in GPU memory. Our results in Figure 12 also shows that
using our memory management mechanism is more efficient
than shrinking the mini-batch size. For the three mini-batch
sizes compared, we keep the inter-machine communication
the same by doing multiple mini-batches per clock as needed



(e.g., four 50-image mini-batches per clock). For the case
of 100 images per batch and 50 images per batch, 3.7 GB
and 3.3 GB respectively are needed to keep everything in
GPU memory (including access buffers for double buffering).
While smaller mini-batches reduce the total memory require-
ment, they perform significantly less well for two primary
reasons: (1) the GPU computation is more efficient with a
larger mini-batch size, and (2) the time for reading and up-
dating the parameter data locally, which does not shrink with
mini-batch size, is amortized over more data.

Training a very large neural network. To evaluate per-
formance for much larger neural networks, we create and
train huge synthetic models. Each such neural network con-
tains only fully connected layers with no weight sharing, so
there is one model parameter (weight) for every connection.
The model parameters of each layer is about 373 MB. We
create multiple such layers and measure the throughput (in
terms of # connections trained per second) of training differ-
ent sized networks, as shown in Figure 13. For all sizes tested,
up to a 20 GB model (56 layers) that requires over 70 GB
total (including local data), GeePS is able to train the neural
network without excessive overhead. The overall result is
that GeePS’s GPU memory management mechanisms allows
data-parallel training of very large neural networks, bounded
by the largest layer rather than the overall model size.
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Figure 13. Training throughput on very large models. Note
that the number of connections increases linearly with model size,
so the per-image training time grows with model size because the
per-connection training time stays relatively constant.

Video classification on longer videos. As is described
in Section 2.1, the video classification application requires
complete sequences of image frames to be in the same mini-
batch, so the GPU memory size will either limit the maximum
number of frames per video or force the model to be split
across multiple machines, incurring extra complexity and
network communication overhead. Using unmodified Caffe,
for example, our RNN can support a maximum video length
of 48 frames.4 Because the videos are often sampled at a
rate of 30 frames per second, a 48-frame video is less than
2 seconds in length. Ng et al. [34] find that using more frames
in a video improves the classification accuracy. In order to
use a video length of 120 frames, Ng et al. used a model-

4 Here, we are just considering the memory consumption of the training
stage. If we further consider the memory used for testing, the supported
maximum video length will be shorter.

parallel approach to split the model across four machines,
which incurs extra network communication overhead. By
contrast, with the memory management support of GeePS,
we are able to train videos with up to 192 frames, using solely
data parallelism.

5.4 The effects of looser synchronization
Use of looser synchronization models, such as Stale Syn-
chronous Parallel (SSP) or even unbounded asynchronous,
has been shown to provide significantly faster convergence
rates in data-parallel CPU-based model training systems [3,
7, 10, 14, 19, 24, 32]. This section shows results confirming
our experience that this does not hold true with GPU-based
deep learning.
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Figure 14. Data-parallel per-mini-batch training time for
AdamLike model under different configurations. We refer to
“stall time” as any part of the runtime when GPUs are not
doing computations.

Figure 14 compares the per-mini-batch AdamLike model
training time with 8 machines, when using GeePS, GeePS-
single-table, and CPU-PS, and each of three synchroniza-
tion models: BSP (“Slack 0”), SSP (“Slack 1”), and Asyn-
chronous (“Slack Inf”). The GeePS-single-table setup has
the application store all its parameter data in a single table,
so that the parameter updates of all layers are sent to the
server together as a whole batch. While in the default GeePS
setup, where the parameter data of each layer is stored in a
distinct table, the parameter updates of a layer can be sent
to the server (and propagated to other workers) before the
computation of other layers finish. Showing the performance
of GeePS-single-table helps us understand the performance
improvement coming from decoupling the parameter data
of different layers. Each bar in Figure 14 divides the total
into two parts. First, the computation time is the time that the
application spends on training, which is mostly unaffected
by the parameter server artifact and synchronization model;
the non-BSP GeePS cases show a slight increase because of
minor GPU-internal resource contention when there is great
overlap between computation and background data move-
ment. Second, the stall time includes any additional time
spent on reading and updating parameter data, such as wait-
ing time for slow workers to catch up or updated parameters
to arrive, and time for moving data between GPU and CPU
memory.



There are two interesting observations here. First, even for
the Slack 0 (BSP) case, GeePS has little stall time. That is
because, with our specializations, the per-layer updates can
be propagated in the background, before the computations of
other layers finish. The second observation is that expensive
GPU/CPU data movement stalls CPU-PS execution, even
with asynchronous communication (Slack Inf). Though CPU-
PS also keeps parameter data of different layers in separate
tables, the application has to perform expensive GPU/CPU
data movement in the foreground each time it accesses the
parameter data.
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Figure 15. AdamLike model top-1 accuracy as a function of
the number of training images processed, for BSP, SSP with
slack 1, and Async.

Figure 15 compares the classification accuracy as a func-
tion of the number of training images processed, for GeePS
with BSP, SSP (Slack 1), and Async. The result shows that,
when using SSP (Slack 1) or Async, many more images must
be processed to reach the same accuracy as with BSP (e.g.,
2× more for Slack 1 and 3× more for Async to reach 10%
accuracy). The training throughput speedups achieved with
Slack 1 or Async are not sufficient to overcome the reduced
training quality per image processed—using BSP leads to
much faster convergence. We believe there are two reasons
causing this outcome. First, with our specializations, there is
little to no communication delay for DNN applications, so
adding data staleness does not increase the throughput much.
Second, the conditions in the SSP proofs of previous liter-
atures [19] do not apply to DNN, because training a DNN
is a non-convex problem. Interestingly, our observation is
consistent with the concern about using parameter servers for
data-parallel GPU-based training expressed by Chilimbi et
al. [7]: “Either the GPU must constantly stall while waiting
for model parameter updates or the models will likely diverge
due to insufficient synchronization.” Fortunately, GeePS’s
GPU-specialized design greatly reduces the former effect,
allowing BSP-based execution to scale well.

6. Additional related work
This section augments the background related work discussed
in Section 2, which covered use of parameter servers and
individual GPUs for deep learning.

Coates et al. [9] describe a specialized multi-machine
GPU-based system for parallel deep learning. The architec-
ture used is very different than GeePS. Most notably, it relies

on model parallelism to partition work across GPUs, rather
than the simpler data-parallel model. It also uses special-
ized MPI-based communication over Infiniband, rather than
a general parameter server architecture, regular sockets, and
Ethernet.

Deep Image [33] is a custom-built supercomputer for deep
learning via GPUs. The GPUs used have large memory ca-
pacity (12 GB), and their image classification network fits
within it, allowing use of data-parallel execution. They also
support for model-parallel execution, with ideas borrowed
from Krizhevsky et al. [22], by partitioning the model on fully
connected layers. The machines are interconnected by Infini-
band with GPUDirect RDMA, so no CPU involvement is
required, and they do not use the CPU cores or CPU memory
to enhance scalability like GeePS does. Deep Image exploits
its low latency GPU-direct networking for specialized param-
eter state exchanges rather than using a general parameter
server architecture like GeePS.

MXNet [6] and Poseidon [35] are two concurrently de-
veloped ([12]) systems for multi-GPU deep learning. Both
systems take the data-parallel approach by making use of
CPU-based parameter servers (Poseidon uses Bosen [32]
and MXNet uses ParameterServer [24]). GeePS differs from
MXNet and Poseidon in two primary ways. First, in order
to overcome the inefficiency of using CPU-based parameter
servers, both MXNet and Poseidon rely on optimizations to
their specific GPU application system (Poseidon is built on
Caffe and MXNet writes their own). GeePS, on the other
hand, specializes its reusable parameter server module, pro-
viding efficiency for all GPU deep learning applications it
hosts. Indeed, the application improvements made for MXNet
and Poseidon would further improve our reported perfor-
mance numbers. Second, both MXNet and Poseidon require
that each of their GPU machines has enough GPU memory
to store all model parameters and intermediate states, limit-
ing the size of their neural networks. GeePS’s explicit GPU
memory management support, on the other hand, allows the
training of neural networks that are much bigger than the
available GPU memory.

7. Conclusions
GeePS is a new parameter server for data-parallel deep learn-
ing on GPUs. Experimental results show that GeePS enables
scalable training throughput, resulting in faster convergence
of model parameters when using multiple GPUs and much
faster convergence than CPU-based training. In addition,
GeePS’s explicit GPU memory management support enables
GPU-based training of neural networks that are much larger
than the GPU memory, swapping data to and from CPU mem-
ory in the background. Combined, GeePS enables use of
data-parallel execution and the general-purpose parameter
server model to achieve efficient, scalable deep learning on
distributed GPUs.
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