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Thesis statement

• The characteristics of large-scale

data-parallel machine learning computations 

can be exploited in the implementation of

a parameter server

to increase their efficiencyto increase their efficiency

by an order of magnitude or more.
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Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning
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Traditional parameter server design

• Traditional PS is like a generic key-value store

• data organized as a collection of key-value pairs

– accessed with Read and Update interface

ML app worker 0
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Traditional parameter server design

• Traditional PS is like a generic key-value store

• data organized as a collection of key-value pairs

– accessed with Read and Update interface

• sharded distributedly and co-located with ML workers

• assumes no knowledge of the access pattern
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Repeated data access in ML applications

Page-0

Worker-0

Example application: PageRank

Parameter data: ranks of pages, stored in parameter server
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rank[j] += change of rank[i]

ENDFOREACH

WHILE NOT CONVERGE



Repeated data access in ML applications

Page-0

Worker-0

Worker-0:
LOOP

# Link-0

Read rank[2]

Example application: PageRank

Parameter data: ranks of pages, stored in parameter server
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# Link-1

Read rank[1]

Update rank[2]

Clock

WHILE NOT CONVERGE

• Param access depends only on the model

• Does not depend on param values



Repeated data access sequence

• Many examples of ML applications

• including deep learning, matrix factorization and LDA

• Knowledge of repeated access sequence can be 

exploited to improve efficiency
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Obtain per-iter sequence via a virtual iteration

// Original

LoadTrainingData()

do {

DoIteration()

} while (not stop)
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} while (not stop)



Obtain per-iter sequence via a virtual iteration

// With virtual iteration

LoadTrainingData()

ps.StartVirtualIter()

DoIteration()

ps.FinishVirtualIter()

do {

// Original

LoadTrainingData()

do {

DoIteration()

} while (not stop)

• Calls in virtual iter. are recorded with no action taken

– almost no overhead
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do {

DoIteration()

} while (not stop)

} while (not stop)



Optimizations on informed access

• Many optimizations applied after virtual iteration

1. parameter data sharding with better locality

Machine-1

ML Worker-1

Machine-0

ML Worker-0
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Optimizations on informed access

• Many optimizations applied after virtual iteration

1. parameter sharding with better locality

2. prefetching

3. specialized caching policies

4. efficient marshalling-free data structures

5. NUMA-aware memory arrangement
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IterStore optimization speedups
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• matrix factorization: Netflix dataset, rank 1000

• LDA: NYTimes dataset, 1000 topics

• PageRank: Twitter dataset



IterStore optimization speedups
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• 45x speedup on PageRank

• 5x speedup on matrix factorization



IterStore optimization speedups

Henggang Cui  © April 17http://www.pdl.cmu.edu/ 18

• faster than GraphLab (state-of-art at that time)

•11x faster on matrix factorization



Take-away messages from IterStore

• Many ML applications exhibit iterativeness

• same sequence of access every iteration

• can be gathered via a virtual iteration

• Systems can exploit repeated access

• speed up real ML benchmarks by up to 45x
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Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning
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GPU device

A machine with a GPU device

NIC

Network
CPU cores

...

Local

storage

GPU device

GPU

memory

(a few GB)

GPU cores
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DRAM

(CPU memory)

• Small GPU memory
• Expensive to copy between GPU/CPU mem



Single-GPU machine learning

Train Intermediate

a mini-batch of training data

Staging memory

for input data batch
Input data file

(training data)
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Train

data

CPU memory

Intermediate

data

Parameter data

GPU memory (a few GB)



Intermediate

Multi-GPU ML via CPU parameter  server

Train

Staging memory

for input data batch
Input data file

(training data)

1. Expensive GPU/CPU Intermediate

data

Parameter data
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Parameter 

server shard 0

Train

data

GPU memory (a few GB)CPU memory

Parameter cache

Network

1. Expensive GPU/CPU

data transfer

in foreground

2. Only works when

data fits in GPU memory



How we train a deep neural network

Label probabilities
• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Henggang Cui  © April 17http://www.pdl.cmu.edu/ 24

Training images
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• do a forward pass
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How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

• Important characteristics

• repeating access ever iteration

• only small fraction of data used

at each step
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Training images

GeePS will exploit those characteristics



Multi-GPU ML via GeePS

Train Intermediate

Staging memory

for input data batch
Input data file

(training data)

1. Expensive GPU/CPU
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GeePS prefetches data in the background

Train Intermediate

Staging memory

for input data batch
Input data file

(training data)
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Parameter 

server shard 0
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data
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data

Parameter cache Parameter data

Network

• Prefetch data to GPU memory

according to access info



Train Intermediate

GeePS prefetches data in the background

Staging memory

for input data batch
Input data file

(training data)

Train

data
Intermediate

data

Access buffer poolParameter cache

Parameter 

server shard 0
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CPU memory

Network

Buffers managed by GeePS

GPU memory (a few GB)

• Prefetch data to GPU memory

according to access info



GPU memory management

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Class probabilities

• Important characteristics

• repeating access ever iteration

• only small fraction of data used

at each step

Henggang Cui  © April 17http://www.pdl.cmu.edu/ 33

• Use GPU memory as a cache to keep actively used data

• Keep the remaining data in CPU memory

Training images



Local data

GPU memory management

Staging memory

for input data batch
Input data file

(training data)

GeePS manages local data also
Local data kept in CPU memory

Local data

Access buffer poolParameter cache

Parameter 

server shard 0
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CPU memory

Network

GPU memory (a few GB)



GPU memory management

Staging memory

for input data batch

Local data

Input data file

(training data)

Local data kept in CPU memory

Parameter cache
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Parameter 

server shard 0

CPU memory

Network

Access buffer pool

GPU memory is used as a cache

GPU memory (a few GB)



Experimental setups

• GeePS-Caffe setups

• Caffe: single-machine GPU deep learning system

• GeePS-Caffe: Caffe linked with GeePS

• Baseline

• Caffe linked with CPU-based PS (IterStore)

• Dataset and model

• ImageNet: 7 million training images in 22,000 classes

• Model: AlexNet
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Training throughput
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• GeePS is much faster than CPU-based PS

• 2.6x higher throughput



Training throughput
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• GeePS scales close to linear with more machines

• with 16 machines, 13x faster than single-GPU

Single-GPU



Take-away messages from GeePS

• GPU-specialized parameter server for GPU DL

• exploits the layer-by-layer pattern

• efficiently overlap data transfer with computation

• 13x throughput speedup using 16 machines

• efficiently handle problems larger than GPU memory
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Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning
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Training tunables in machine learning
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• Training tunables:

• learning rate (step size)

• momentum

• training batch size

• data staleness bound

• ...

• Tuning them is important

• affect task completion time

• affect solution quality 



Training tunables in machine learning
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• Training tunables:

• learning rate (step size)

• momentum

• training batch size

• data staleness bound

• ...

• Model hyperparams:

• network depth

• neuron layer sizes

• neuron activation function

• ...

• NOT in the obj. function 

• In the obj. function



Traditional tuning approaches

• Manual tuning

• by domain expert, via trial and error

• slow, expensive and prone to sub-optimal settings

• Automatic hyperparam tuning approaches
• e.g., Spearmint [Snoek et al. ‘12] and HyperBand [Li et al. ‘16]
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• designed for model hyperparameter tuning

• need to train models to completion multiple times

– high overhead

• cannot change tunables during training

– fail to achieve good model quality for many apps

MLtuner will address those problems



Try & evaluate tunables in trial branches

Tunable setting #1

Tunable setting #2

Each running for some time

Henggang Cui  © April 17http://www.pdl.cmu.edu/ 44

Forked trial training branches

Starting branch

Monitor

convergence speed

Tunable setting #3



Tunable setting #1

Try & evaluate tunables in trial branches

Tunable setting #2
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Tunable setting #3

Keep training only the best branch



Re-tuning tunables

Tunable setting #3

Tunable setting #4

Tunable setting #5
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Tunable setting #3
• Re-tune because best setting changes

• Many deep learning apps require re-tuning

learning rate to achieve good model quality



MLtuner design details

• Pick settings to try with HyperOpt algorithm

• Monitor training loss to estimate speed

• Downsample the noisy loss traces

Henggang Cui  © April 17http://www.pdl.cmu.edu/ 47

• Decide the trial time based on noisiness



Deciding trial time based on stability

Progress not stable
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Progress not stable

• Start with minimal trial time

• Check the stability of converging progress



Deciding trial time based on stability

Trial time doubled
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Trial time doubled

• Start with minimal trial time

• Check the stability of converging progress

• Double trial time, until any stable branch found

• Use the decided trial time for all future branches



Experimental setups

• Application: image classification

• model: Inception-BN

• dataset: ILSVRC12

• other apps include RNNs and matrix factorization

• Tunables:

• learning rate, momentum, batch size, data staleness

• Baselines

• Spearmint [Snoek et al. ‘12]

• HyperBand [Li et al. ‘16]
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MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness
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Re-tuning improves model accuracy
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Re-tuning improves model accuracy

MLtuner tunes tunables

(based on training loss)



MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness
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Spearmint approach:

sample settings with Bayesian optimization

run each sampled setting to completion

spent all time trying setting (lr=1e-5, m=0, bs=2, ds=0)

Not finished yet



MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness
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HyperBand approach:

try multiple settings in parallel

stop half of the trying settings every a few iterations

MLtuner converges faster and reaches higher accuracy

Not finished yet



Tuning initial LR for adaptive LR algorithms

• Benchmark: image classification with AlexNet on Cifar10
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Initial learning rate affects converged model accuracies



Tuning initial LR for adaptive LR algorithms

• Benchmark: image classification with AlexNet on Cifar10

• Tunable: initial learning rate
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Initial learning rates picked by MLtuner are close to optimal

MLtuner complements the adaptive LR algorithms



Thesis contributions

• IterStore [Cui et al. SoCC ‘14]

• exploited repeated data access

• designed methods of determining it and specializations to exploit it

• up to 50x speed up

• GeePS [Cui et al. EuroSys ‘16]

• exploited layer-by-layer pattern of deep learning

• designed a PS that overlaps GPU/CPU data transfer with computation

• 2.5x speed up compared to traditional CPU parameter server

• MLtuner [In preparation]

• identified training tunables as a special class of hyperparams

• over an order of magnitude faster than traditional tuning approaches
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