
Exploiting Application Characteristics

for Efficient System Support of

Data-parallel Machine LearningData-parallel Machine Learning

Henggang Cui

PARALLEL DATA LABORATORY
Carnegie Mellon University

Machine learning

Eagle

Vulture

Deep neural network

Labelled images

Henggang Cui © April 17http://www.pdl.cmu.edu/ 2

Machine learning

programTraining data

Read/Update

params

Vulture

Accipiter

Osprey

Model parameters

(solution)

Data-parallel machine learning

Eagle

Vulture
Read/Update

params

Parameter

server

Distributed

ML workers

Henggang Cui © April 17http://www.pdl.cmu.edu/ 3

Partitioned

Training data

Shared

model parameters

Accipiter

Osprey

params server

Thesis statement

• The characteristics of large-scale

data-parallel machine learning computations

can be exploited in the implementation of

a parameter server

to increase their efficiencyto increase their efficiency

by an order of magnitude or more.

Henggang Cui © April 17http://www.pdl.cmu.edu/ 4

Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 5

Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 6

Traditional parameter server design

• Traditional PS is like a generic key-value store

• data organized as a collection of key-value pairs

– accessed with Read and Update interface

ML app worker 0

Henggang Cui © April 17http://www.pdl.cmu.edu/ 7

Read/Update
Parameter

server

ML app worker 0

ML app worker 1

Traditional parameter server design

• Traditional PS is like a generic key-value store

• data organized as a collection of key-value pairs

– accessed with Read and Update interface

• sharded distributedly and co-located with ML workers

• assumes no knowledge of the access pattern

Henggang Cui © April 17http://www.pdl.cmu.edu/ 8

Parameter server

shard 0
ML app worker 0

ML app worker 1
Parameter server

shard 1

Repeated data access in ML applications

Page-0

Worker-0

Example application: PageRank

Parameter data: ranks of pages, stored in parameter server

Henggang Cui © April 17http://www.pdl.cmu.edu/ 9

Page-1

Page-2

L
in

k
-2

L
in

k
-3

Worker-1

Init ranks to random value

LOOP

FOREACH link from i to j

Read rank[i]

rank[j] += change of rank[i]

ENDFOREACH

WHILE NOT CONVERGE

Repeated data access in ML applications

Page-0

Worker-0

Worker-0:
LOOP

Link-0

Read rank[2]

Example application: PageRank

Parameter data: ranks of pages, stored in parameter server

Henggang Cui © April 17http://www.pdl.cmu.edu/ 10

Page-1

Page-2

L
in

k
-2

L
in

k
-3

Worker-1

Read rank[2]

Update rank[0]

Link-1

Read rank[1]

Update rank[2]

Clock

WHILE NOT CONVERGE

• Param access depends only on the model

• Does not depend on param values

Repeated data access sequence

• Many examples of ML applications

• including deep learning, matrix factorization and LDA

• Knowledge of repeated access sequence can be

exploited to improve efficiency

Henggang Cui © April 17http://www.pdl.cmu.edu/ 11

Obtain per-iter sequence via a virtual iteration

// Original

LoadTrainingData()

do {

DoIteration()

} while (not stop)

Henggang Cui © April 17http://www.pdl.cmu.edu/ 12

} while (not stop)

Obtain per-iter sequence via a virtual iteration

// With virtual iteration

LoadTrainingData()

ps.StartVirtualIter()

DoIteration()

ps.FinishVirtualIter()

do {

// Original

LoadTrainingData()

do {

DoIteration()

} while (not stop)

• Calls in virtual iter. are recorded with no action taken

– almost no overhead

Henggang Cui © April 17http://www.pdl.cmu.edu/ 13

do {

DoIteration()

} while (not stop)

} while (not stop)

Optimizations on informed access

• Many optimizations applied after virtual iteration

1. parameter data sharding with better locality

Machine-1

ML Worker-1

Machine-0

ML Worker-0

Henggang Cui © April 17http://www.pdl.cmu.edu/ 14

PS shard-1

ML Worker-1

PS shard-0

ML Worker-0

Optimizations on informed access

• Many optimizations applied after virtual iteration

1. parameter sharding with better locality

2. prefetching

3. specialized caching policies

4. efficient marshalling-free data structures

5. NUMA-aware memory arrangement

Henggang Cui © April 17http://www.pdl.cmu.edu/ 15

IterStore optimization speedups

Henggang Cui © April 17http://www.pdl.cmu.edu/ 16

• matrix factorization: Netflix dataset, rank 1000

• LDA: NYTimes dataset, 1000 topics

• PageRank: Twitter dataset

IterStore optimization speedups

Henggang Cui © April 17http://www.pdl.cmu.edu/ 17

• 45x speedup on PageRank

• 5x speedup on matrix factorization

IterStore optimization speedups

Henggang Cui © April 17http://www.pdl.cmu.edu/ 18

• faster than GraphLab (state-of-art at that time)

•11x faster on matrix factorization

Take-away messages from IterStore

• Many ML applications exhibit iterativeness

• same sequence of access every iteration

• can be gathered via a virtual iteration

• Systems can exploit repeated access

• speed up real ML benchmarks by up to 45x

Henggang Cui © April 17http://www.pdl.cmu.edu/ 19

Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 20

GPU device

A machine with a GPU device

NIC

Network
CPU cores

...

Local

storage

GPU device

GPU

memory

(a few GB)

GPU cores

Henggang Cui © April 17http://www.pdl.cmu.edu/ 21

DRAM

(CPU memory)

• Small GPU memory
• Expensive to copy between GPU/CPU mem

Single-GPU machine learning

Train Intermediate

a mini-batch of training data

Staging memory

for input data batch
Input data file

(training data)

Henggang Cui © April 17http://www.pdl.cmu.edu/ 22

Train

data

CPU memory

Intermediate

data

Parameter data

GPU memory (a few GB)

Intermediate

Multi-GPU ML via CPU parameter server

Train

Staging memory

for input data batch
Input data file

(training data)

1. Expensive GPU/CPU Intermediate

data

Parameter data

Henggang Cui © April 17http://www.pdl.cmu.edu/ 23

Parameter

server shard 0

Train

data

GPU memory (a few GB)CPU memory

Parameter cache

Network

1. Expensive GPU/CPU

data transfer

in foreground

2. Only works when

data fits in GPU memory

How we train a deep neural network

Label probabilities
• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Henggang Cui © April 17http://www.pdl.cmu.edu/ 24

Training images

How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

Henggang Cui © April 17http://www.pdl.cmu.edu/ 25

Training images

How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

Henggang Cui © April 17http://www.pdl.cmu.edu/ 26

Training images

How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

Henggang Cui © April 17http://www.pdl.cmu.edu/ 27

Training images

How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

Henggang Cui © April 17http://www.pdl.cmu.edu/ 28

Training images

How we train a deep neural network

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Label probabilities

• Important characteristics

• repeating access ever iteration

• only small fraction of data used

at each step

Henggang Cui © April 17http://www.pdl.cmu.edu/ 29

Training images

GeePS will exploit those characteristics

Multi-GPU ML via GeePS

Train Intermediate

Staging memory

for input data batch
Input data file

(training data)

1. Expensive GPU/CPU

Henggang Cui © April 17http://www.pdl.cmu.edu/ 30

Parameter

server shard 0

Train

data

GPU memory (a few GB)CPU memory

Intermediate

data

Parameter cache Parameter data

Network

1. Expensive GPU/CPU

data transfer

in foreground

GeePS prefetches data in the background

Train Intermediate

Staging memory

for input data batch
Input data file

(training data)

Henggang Cui © April 17http://www.pdl.cmu.edu/ 31

Parameter

server shard 0

Train

data

GPU memory (a few GB)CPU memory

Intermediate

data

Parameter cache Parameter data

Network

• Prefetch data to GPU memory

according to access info

Train Intermediate

GeePS prefetches data in the background

Staging memory

for input data batch
Input data file

(training data)

Train

data
Intermediate

data

Access buffer poolParameter cache

Parameter

server shard 0

Henggang Cui © April 17http://www.pdl.cmu.edu/ 32

CPU memory

Network

Buffers managed by GeePS

GPU memory (a few GB)

• Prefetch data to GPU memory

according to access info

GPU memory management

• For each iteration (mini-batch)

• load one batch of training data

• do a forward pass

• do a backward pass

Class probabilities

• Important characteristics

• repeating access ever iteration

• only small fraction of data used

at each step

Henggang Cui © April 17http://www.pdl.cmu.edu/ 33

• Use GPU memory as a cache to keep actively used data

• Keep the remaining data in CPU memory

Training images

Local data

GPU memory management

Staging memory

for input data batch
Input data file

(training data)

GeePS manages local data also
Local data kept in CPU memory

Local data

Access buffer poolParameter cache

Parameter

server shard 0

Henggang Cui © April 17http://www.pdl.cmu.edu/ 34

CPU memory

Network

GPU memory (a few GB)

GPU memory management

Staging memory

for input data batch

Local data

Input data file

(training data)

Local data kept in CPU memory

Parameter cache

Henggang Cui © April 17http://www.pdl.cmu.edu/ 35

Parameter

server shard 0

CPU memory

Network

Access buffer pool

GPU memory is used as a cache

GPU memory (a few GB)

Experimental setups

• GeePS-Caffe setups

• Caffe: single-machine GPU deep learning system

• GeePS-Caffe: Caffe linked with GeePS

• Baseline

• Caffe linked with CPU-based PS (IterStore)

• Dataset and model

• ImageNet: 7 million training images in 22,000 classes

• Model: AlexNet

Henggang Cui © April 17http://www.pdl.cmu.edu/ 36

Training throughput

Henggang Cui © April 17http://www.pdl.cmu.edu/ 37

• GeePS is much faster than CPU-based PS

• 2.6x higher throughput

Training throughput

Henggang Cui © April 17http://www.pdl.cmu.edu/ 38

• GeePS scales close to linear with more machines

• with 16 machines, 13x faster than single-GPU

Single-GPU

Take-away messages from GeePS

• GPU-specialized parameter server for GPU DL

• exploits the layer-by-layer pattern

• efficiently overlap data transfer with computation

• 13x throughput speedup using 16 machines

• efficiently handle problems larger than GPU memory

Henggang Cui © April 17http://www.pdl.cmu.edu/ 39

Three case studies

• IterStore [Cui et al. SoCC ‘14]

• an efficient parameter server design

• exploits repeated parameter data access

• GeePS [Cui et al. EuroSys ‘16]

• specialized parameter server for GPU deep learning

• exploits layer-by-layer pattern of deep learning

• MLtuner [In preparation]

• system for automatic machine learning tuning

• exploits quick decision of training hyperparam tuning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 40

Training tunables in machine learning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 41

• Training tunables:

• learning rate (step size)

• momentum

• training batch size

• data staleness bound

• ...

• Tuning them is important

• affect task completion time

• affect solution quality

Training tunables in machine learning

Henggang Cui © April 17http://www.pdl.cmu.edu/ 42

• Training tunables:

• learning rate (step size)

• momentum

• training batch size

• data staleness bound

• ...

• Model hyperparams:

• network depth

• neuron layer sizes

• neuron activation function

• ...

• NOT in the obj. function

• In the obj. function

Traditional tuning approaches

• Manual tuning

• by domain expert, via trial and error

• slow, expensive and prone to sub-optimal settings

• Automatic hyperparam tuning approaches
• e.g., Spearmint [Snoek et al. ‘12] and HyperBand [Li et al. ‘16]

Henggang Cui © April 17http://www.pdl.cmu.edu/ 43

• designed for model hyperparameter tuning

• need to train models to completion multiple times

– high overhead

• cannot change tunables during training

– fail to achieve good model quality for many apps

MLtuner will address those problems

Try & evaluate tunables in trial branches

Tunable setting #1

Tunable setting #2

Each running for some time

Henggang Cui © April 17http://www.pdl.cmu.edu/ 44

Forked trial training branches

Starting branch

Monitor

convergence speed

Tunable setting #3

Tunable setting #1

Try & evaluate tunables in trial branches

Tunable setting #2

Henggang Cui © April 17http://www.pdl.cmu.edu/ 45

Tunable setting #3

Keep training only the best branch

Re-tuning tunables

Tunable setting #3

Tunable setting #4

Tunable setting #5

Henggang Cui © April 17http://www.pdl.cmu.edu/ 46

Tunable setting #3
• Re-tune because best setting changes

• Many deep learning apps require re-tuning

learning rate to achieve good model quality

MLtuner design details

• Pick settings to try with HyperOpt algorithm

• Monitor training loss to estimate speed

• Downsample the noisy loss traces

Henggang Cui © April 17http://www.pdl.cmu.edu/ 47

• Decide the trial time based on noisiness

Deciding trial time based on stability

Progress not stable

Henggang Cui © April 17http://www.pdl.cmu.edu/ 48

Progress not stable

• Start with minimal trial time

• Check the stability of converging progress

Deciding trial time based on stability

Trial time doubled

Henggang Cui © April 17http://www.pdl.cmu.edu/ 49

Trial time doubled

• Start with minimal trial time

• Check the stability of converging progress

• Double trial time, until any stable branch found

• Use the decided trial time for all future branches

Experimental setups

• Application: image classification

• model: Inception-BN

• dataset: ILSVRC12

• other apps include RNNs and matrix factorization

• Tunables:

• learning rate, momentum, batch size, data staleness

• Baselines

• Spearmint [Snoek et al. ‘12]

• HyperBand [Li et al. ‘16]

Henggang Cui © April 17http://www.pdl.cmu.edu/ 50

MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness

Henggang Cui © April 17http://www.pdl.cmu.edu/ 51

Re-tuning improves model accuracy

MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness

Henggang Cui © April 17http://www.pdl.cmu.edu/ 52

Re-tuning improves model accuracy

MLtuner tunes tunables

(based on training loss)

MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness

Henggang Cui © April 17http://www.pdl.cmu.edu/ 53

Spearmint approach:

sample settings with Bayesian optimization

run each sampled setting to completion

spent all time trying setting (lr=1e-5, m=0, bs=2, ds=0)

Not finished yet

MLtuner vs. traditional tuning approaches
Benchmark: image classification with Inception-BN on ILSVRC12

Tunables: learning rate, momentum, batch size, data staleness

Henggang Cui © April 17http://www.pdl.cmu.edu/ 54

HyperBand approach:

try multiple settings in parallel

stop half of the trying settings every a few iterations

MLtuner converges faster and reaches higher accuracy

Not finished yet

Tuning initial LR for adaptive LR algorithms

• Benchmark: image classification with AlexNet on Cifar10

Henggang Cui © April 17http://www.pdl.cmu.edu/ 55

Initial learning rate affects converged model accuracies

Tuning initial LR for adaptive LR algorithms

• Benchmark: image classification with AlexNet on Cifar10

• Tunable: initial learning rate

Henggang Cui © April 17http://www.pdl.cmu.edu/ 56

Initial learning rates picked by MLtuner are close to optimal

MLtuner complements the adaptive LR algorithms

Thesis contributions

• IterStore [Cui et al. SoCC ‘14]

• exploited repeated data access

• designed methods of determining it and specializations to exploit it

• up to 50x speed up

• GeePS [Cui et al. EuroSys ‘16]

• exploited layer-by-layer pattern of deep learning

• designed a PS that overlaps GPU/CPU data transfer with computation

• 2.5x speed up compared to traditional CPU parameter server

• MLtuner [In preparation]

• identified training tunables as a special class of hyperparams

• over an order of magnitude faster than traditional tuning approaches

Henggang Cui © April 17http://www.pdl.cmu.edu/ 57

Thank you!

• My wife

• My advisor: Greg Ganger

• My thesis committee

• Phil Gibbons, Garth Gibson, Eric Xing, Derek Murray

• My collaborators and colleagues at PDL• My collaborators and colleagues at PDL

• Jason Boles, Jim Cipar, Chuck Cranor, David Dai,

Joan Digney, Chad Dougherty, Zis Economou,

Mitch Franzos, Aaron Harlap, Qirong Ho, Kevin Hsieh,

Angela Jiang, Rajat Kateja, Kim Keeton, Jin Kyu Kim,

Karen Lindenfelser, Hyeontaek Lim, Jun Woo Park,

Aurick Qiao, Indrajit Roy, Alexey Tumanov, Jinliang Wei,

Pengtao Xie, Lianghong Xu, Xiaolin Zang, Hao Zhang

Henggang Cui © April 17http://www.pdl.cmu.edu/ 58

References
• [IterStore] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-

Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson,

and E. P. Xing. Exploiting iterative-ness for parallel ML

computations. In SoCC, 2014.

• [GeePS] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E.

P. Xing. GeePS: Scalable deep learning on distributed GPUs

with a GPU-specialized parameter server. In EuroSys, 2016.

• [LazyTable] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. • [LazyTable] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A.

Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.

Gibson, and E. P. Xing. Exploiting bounded staleness to speed

up big data analytics. In ATC, 2014.

• [Aperture] H. Cui, K. Keeton, I. Roy, K. Viswanathan, and G. R.

Ganger. Using data transformations for low-latency time series

analysis. In SoCC, 2015.

Henggang Cui © April 17http://www.pdl.cmu.edu/ 59

References
• [SSP] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B.

Gibbons,G. A. Gibson, G. R. Ganger, and E. P. Xing. More

effective distributed ML via a Stale Synchronous Parallel

parameter server. In NIPS, 2013.

• [GraphLab] J. Gonzalez, Y. Low, et al. PowerGraph: Distributed

graph-parallel computation on natural graphs. In OSDI, 2012.

• [Caffe] Y. Jia, et al. Caffe: Convolutional architecture for fast

feature embedding. arXiv preprint arXiv:1408.5093, 2014.feature embedding. arXiv preprint arXiv:1408.5093, 2014.

• [Spearmint] J. Snoek, et al. Practical bayesian optimization of

machine learning algorithms. In NIPS, 2012.

• [HyperBand] L. Li, et al. Hyperband: A Novel Bandit-Based

Approach to Hyperparameter Optimization. arXiv preprint

arXiv:1603.06560v3, 2016.

Henggang Cui © April 17http://www.pdl.cmu.edu/ 60

Additional related work
• M. Li, et al. Scaling distributed machine learning with the parameter

server. In OSDI, 2014.

• T. Chilimbi, et al. Project Adam: Building an efficient and scalable

deep learning training system. In OSDI, 2014.

• T. Chen, et al. MXNet: A flexible and efficient machine learning library

for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274, 2015.

• J. Dean, et al. Large scale distributed deep networks. In NIPS, 2012.

• E. R. Sparks, et al. Automating Model Search for Large Scale Machine

Learning. In SoCC, 2015

Henggang Cui © April 17http://www.pdl.cmu.edu/ 61

