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One slide overview

• Iterativeness arises in some ML apps

• Consequence: repeated data operation sequences

• Repeating pattern can be exploited

• Detect with minor effort

– Either in a real or a "virtual" iteration

• Specialize structures and policies to known pattern

– Data partitioning, prefetching, lock avoidance, 

pre-marshalled structures, etc.

• Next

• Parallel machine learning

• PageRank as one example
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Parallel machine learning

Parameter 

Bulk Synch Parallel:

barrier each iter
INC: associative updates
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Parallel machine learning

Parameter 

Goal: improve performance by exploiting iterativeness
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(solution)
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Example: PageRank

Page-0

Worker-0

Input data: a set of links, stored locally

Parameter data: ranks of pages, stored in parameter server

All ranks set to some value
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Worker-1

All ranks set to some value

LOOP

FOREACH link from i to j

read Rank(i)

Rank(j) += change of Rank(i)

ENDFOREACH

WHILE NOT CONVERGE



Example: PageRank

Page-0

Worker-0

Worker-0:
LOOP

# Link-0

READ page[2].rank

INC page[0].rank

Input data: a set of links, stored locally

Parameter data: ranks of pages, stored in parameter server
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Page-1
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Worker-1

INC page[0].rank

# Link-1

READ page[1].rank

INC page[2].rank

CLOCK

WHILE NOT CONVERGE

• Repeated operation sequence 

depends only on input data

• Does not depend on ranks



Repeated operation sequences

• Many examples of ML applications

• Including Topic Modeling and Collaborative Filtering

• Knowledge of repeated operation sequence can 

be exploited to improve efficiency

• 50x speed up for PageRank

• Talk outline

• Ways to obtain per-iter operation sequences

• Optimizations with pre-knowledge of operations

• Experiment results
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Obtain per-iter operation sequences

• Parameter server operations
• READ

• INC

• CLOCK

– Can be thought of as barrier

LOOP

READ page[2].rank

INC page[0].rank

READ page[1].rank

INC page[2].rank

• Two ways of obtaining it

• Gather in the first iteration

• Gather in a “virtual iteration”
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INC page[2].rank

CLOCK

WHILE NOT CONVERGE



Gather in the first iteration

// Original

load_data()

init_param_vals()

do {

do_iteration()

// Gather in first iter

load_data()

init_param_vals()

do {

if (first iteration)

ps.start_gather()
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do_iteration()

} while (not stop)

ps.start_gather()

do_iteration()

if (first iteration)

ps.finish_gather()

} while (not stop)



Gather in the first iteration

+ Little programmer effort

• Only need to annotate iteration boundaries

- Considerable performance overhead- Considerable performance overhead

• The first iteration runs without optimizations

• More cost to apply the optimizations

– States from the first iteration need to be migrated
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Gather in a virtual iteration

// Gather in virtual iter

load_data()

ps.start_gather(virtual)

do_iteration()

ps.finish_gather()

init_param_vals()

// Gather in first iter

load_data()

init_param_vals()

do {

if (first iteration)

ps.start_gather()

Just to remind you
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init_param_vals()

do {

do_iteration()

} while (not stop)

• Operations between start_gather(virtual) and finish_gather()

are recorded but return without any action. Nearly free.

ps.start_gather()

do_iteration()

if (first iteration)

ps.finish_gather()

} while (not stop)



Gather in a virtual iteration

- Programmer needs to be more careful

• do_iteration() needs to work with virtual READ/INC

– Computation must be independent of param value

+ Better performance

• No operations performed during virtual iteration

• No state migration

• All real iterations run at optimized speed
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Optimizations on informed access

• Optimizations applied at finish_gather()

1. Cross-machine parameter data placement

2. Prefetching

3. Static cache policies

4. More efficient static data structures

5. NUMA-aware memory management

• Prototyped on IterStore

• A “parameter server library”

• An improved version of LazyTable
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IterStore architecture

Machine

IterStore library

App worker App worker

Shared parameter data
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IterStore architecture

Machine

IterStore library

App worker App worker
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Master store

Param data organized as rows



IterStore architecture

Machine-0

IterStore library

Machine-1

App worker App worker
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Master shard-0

Rows are sharded across machines

Master shard-1



IterStore architecture

IterStore library

Machine-0 Machine-1

App worker App worker
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Master shard-0

Process cache

Master shard-1

Process cache



IterStore architecture

App worker

IterStore library

App worker

Thread cache Thread cache

Machine-0 Machine-1
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Master shard-0 Master shard-1

Process cache



1: Parameter data placement

• Cross-machine parameter data placement

• Store each row at the machine accessing it most

• Balance the load for rows without clear affinity

Machine-0 Machine-1
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Master shard-0

Machine-0

Master shard-1

Machine-1



2: Prefetching

• Prefetching

• Prefetch to process cache at the beginning of clock

– Rows expected to be read in the clock

• Fetched in a single message
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Master shard-0

Process cache

Master shard-1

prefetch



3: Static cache policies

• Static cache policies

• Decide rows to be cached based on access sequence

• Cache rows with higher utilities

• Never evict rows, no cache eviction overhead

• Use a 2nd (dynamic) cache for items not in static cache

Henggang Cui  © October 14http://www.pdl.cmu.edu/ 22

Process cache

Thread cache

Dynamic

cache

static



4: Static data structures

• Static hash map

• Immutable index

– No global lock needed for index concurrency

• Entries stored in a contiguous block of memory

– Can be sent in a single message without marshalling
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• Thread cache and master shared

• Hash maps

• Each accessed by one thread

• Process cache

• Concurrent hash map



5: NUMA memory management

• NUMA effect in multi-socket machines

• Lower latency to access local memory

• Partition cache and master store structures

• Place each partition local to managing threads
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Faster to access local memory

Socket-0

Mem

Cores

Socket-1

Mem

Cores
Master shard

Process cache

Socket-0 Socket-1



Experiment setup

• Cluster information

• 8 machines, each with 64 cores & 128GB RAM

• 64 application worker threads per machine

• Application benchmarks

• PageRank:

twitter-graph (40m nodes, 1.5b edges)twitter-graph (40m nodes, 1.5b edges)

• Collaborative Filtering:

netflix (480k-by-18k sparse matrix)

• Topic Modeling:

nytimes (100m tokens, 300k docs)
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Overall performance: PR, 5 iters
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PageRank



Overall performance: PR, 5 iters
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PageRank 12x speed up on overall time,

50x speed up on per iteration time



Overall performance: PR, 5 iters
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PageRank Virtual-iter gathering performs

better than first-iter gathering



Overall performance: PR, 5 iters
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Faster than GraphLab even on PageRankPageRank



Overall performance: CF, 5 iters
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Collaborative Filtering More speed up over GraphLab



Overall performance: CF, 100 iters
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Preprocessing time is amortized

over more iterations

Collaborative Filtering



Sensitivity to information accuracy

• Inaccurate information can be caused by

• Work migration

• Skipped work due to parameter convergence

• Experiment method

• Keep real operation sequences fixed

– Report more operations than performed

– Report less operations than performed

• Compare normalized time per iteration

– No inaccuracy as the baseline
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Sensitivity to information accuracy
Report more operations than performed

• Can be caused by work migration or skipped work
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All are insensitive to extra information



Sensitivity to information accuracy
Report less operations than performed

• Can be caused by work migration
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CF and TM are insensitive to missing information



Conclusion

• Many ML applications exhibit iterativeness

• Same sequence of operations every iteration

• Systems can exploit repeated op sequences

• Speed up real ML benchmarks by up to 50x

• Two ways of gathering such operation sequence• Two ways of gathering such operation sequence

• Better performance when doing virtual iteration
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