
Exploiting iterative-ness for

parallel ML computations

Henggang Cui
Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky,

Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons (Intel), Garth A. Gibson, Eric P. Xing

PARALLEL DATA LABORATORY
Carnegie Mellon University

One slide overview

• Iterativeness arises in some ML apps

• Consequence: repeated data operation sequences

• Repeating pattern can be exploited

• Detect with minor effort

– Either in a real or a "virtual" iteration

• Specialize structures and policies to known pattern

– Data partitioning, prefetching, lock avoidance,

pre-marshalled structures, etc.

• Next

• Parallel machine learning

• PageRank as one example

Henggang Cui © October 14http://www.pdl.cmu.edu/ 2

Parallel machine learning
O

n
e

 i
te

ra
ti
o

n

READ, INC

Eg. a web graph Eg. page ranks

Iterative program

fits model

Henggang Cui © October 14http://www.pdl.cmu.edu/ 3

Input data Model parameters

(solution)

O
n

e
 i
te

ra
ti
o

n

Parallel machine learning

Parameter

Bulk Synch Parallel:

barrier each iter
INC: associative updates

Henggang Cui © October 14http://www.pdl.cmu.edu/ 4

Model parameters

(solution)

Parallel iterative

workers
Input data

Parameter

server

Parallel machine learning

Parameter

Goal: improve performance by exploiting iterativeness

Henggang Cui © October 14http://www.pdl.cmu.edu/ 5

Model parameters

(solution)

Parallel iterative

workers

Parameter

server

Input data

Example: PageRank

Page-0

Worker-0

Input data: a set of links, stored locally

Parameter data: ranks of pages, stored in parameter server

All ranks set to some value

Henggang Cui © October 14http://www.pdl.cmu.edu/ 6

Page-1

Page-2

L
in

k
-2

L
in

k
-3

Worker-1

All ranks set to some value

LOOP

FOREACH link from i to j

read Rank(i)

Rank(j) += change of Rank(i)

ENDFOREACH

WHILE NOT CONVERGE

Example: PageRank

Page-0

Worker-0

Worker-0:
LOOP

Link-0

READ page[2].rank

INC page[0].rank

Input data: a set of links, stored locally

Parameter data: ranks of pages, stored in parameter server

Henggang Cui © October 14http://www.pdl.cmu.edu/ 7

Page-1

Page-2

L
in

k
-2

L
in

k
-3

Worker-1

INC page[0].rank

Link-1

READ page[1].rank

INC page[2].rank

CLOCK

WHILE NOT CONVERGE

• Repeated operation sequence

depends only on input data

• Does not depend on ranks

Repeated operation sequences

• Many examples of ML applications

• Including Topic Modeling and Collaborative Filtering

• Knowledge of repeated operation sequence can

be exploited to improve efficiency

• 50x speed up for PageRank

• Talk outline

• Ways to obtain per-iter operation sequences

• Optimizations with pre-knowledge of operations

• Experiment results

Henggang Cui © October 14http://www.pdl.cmu.edu/ 8

Obtain per-iter operation sequences

• Parameter server operations
• READ

• INC

• CLOCK

– Can be thought of as barrier

LOOP

READ page[2].rank

INC page[0].rank

READ page[1].rank

INC page[2].rank

• Two ways of obtaining it

• Gather in the first iteration

• Gather in a “virtual iteration”

Henggang Cui © October 14http://www.pdl.cmu.edu/ 9

INC page[2].rank

CLOCK

WHILE NOT CONVERGE

Gather in the first iteration

// Original

load_data()

init_param_vals()

do {

do_iteration()

// Gather in first iter

load_data()

init_param_vals()

do {

if (first iteration)

ps.start_gather()

Henggang Cui © October 14http://www.pdl.cmu.edu/ 10

do_iteration()

} while (not stop)

ps.start_gather()

do_iteration()

if (first iteration)

ps.finish_gather()

} while (not stop)

Gather in the first iteration

+ Little programmer effort

• Only need to annotate iteration boundaries

- Considerable performance overhead- Considerable performance overhead

• The first iteration runs without optimizations

• More cost to apply the optimizations

– States from the first iteration need to be migrated

Henggang Cui © October 14http://www.pdl.cmu.edu/ 11

Gather in a virtual iteration

// Gather in virtual iter

load_data()

ps.start_gather(virtual)

do_iteration()

ps.finish_gather()

init_param_vals()

// Gather in first iter

load_data()

init_param_vals()

do {

if (first iteration)

ps.start_gather()

Just to remind you

Henggang Cui © October 14http://www.pdl.cmu.edu/ 12

init_param_vals()

do {

do_iteration()

} while (not stop)

• Operations between start_gather(virtual) and finish_gather()

are recorded but return without any action. Nearly free.

ps.start_gather()

do_iteration()

if (first iteration)

ps.finish_gather()

} while (not stop)

Gather in a virtual iteration

- Programmer needs to be more careful

• do_iteration() needs to work with virtual READ/INC

– Computation must be independent of param value

+ Better performance

• No operations performed during virtual iteration

• No state migration

• All real iterations run at optimized speed

Henggang Cui © October 14http://www.pdl.cmu.edu/ 13

Optimizations on informed access

• Optimizations applied at finish_gather()

1. Cross-machine parameter data placement

2. Prefetching

3. Static cache policies

4. More efficient static data structures

5. NUMA-aware memory management

• Prototyped on IterStore

• A “parameter server library”

• An improved version of LazyTable

Henggang Cui © October 14http://www.pdl.cmu.edu/ 14

IterStore architecture

Machine

IterStore library

App worker App worker

Shared parameter data

Henggang Cui © October 14http://www.pdl.cmu.edu/ 15

IterStore architecture

Machine

IterStore library

App worker App worker

Henggang Cui © October 14http://www.pdl.cmu.edu/ 16

Master store

Param data organized as rows

IterStore architecture

Machine-0

IterStore library

Machine-1

App worker App worker

Henggang Cui © October 14http://www.pdl.cmu.edu/ 17

Master shard-0

Rows are sharded across machines

Master shard-1

IterStore architecture

IterStore library

Machine-0 Machine-1

App worker App worker

Henggang Cui © October 14http://www.pdl.cmu.edu/ 18

Master shard-0

Process cache

Master shard-1

Process cache

IterStore architecture

App worker

IterStore library

App worker

Thread cache Thread cache

Machine-0 Machine-1

Henggang Cui © October 14http://www.pdl.cmu.edu/ 19

Master shard-0 Master shard-1

Process cache

1: Parameter data placement

• Cross-machine parameter data placement

• Store each row at the machine accessing it most

• Balance the load for rows without clear affinity

Machine-0 Machine-1

Henggang Cui © October 14http://www.pdl.cmu.edu/ 20

Master shard-0

Machine-0

Master shard-1

Machine-1

2: Prefetching

• Prefetching

• Prefetch to process cache at the beginning of clock

– Rows expected to be read in the clock

• Fetched in a single message

Henggang Cui © October 14http://www.pdl.cmu.edu/ 21

Master shard-0

Process cache

Master shard-1

prefetch

3: Static cache policies

• Static cache policies

• Decide rows to be cached based on access sequence

• Cache rows with higher utilities

• Never evict rows, no cache eviction overhead

• Use a 2nd (dynamic) cache for items not in static cache

Henggang Cui © October 14http://www.pdl.cmu.edu/ 22

Process cache

Thread cache

Dynamic

cache

static

4: Static data structures

• Static hash map

• Immutable index

– No global lock needed for index concurrency

• Entries stored in a contiguous block of memory

– Can be sent in a single message without marshalling

Henggang Cui © October 14http://www.pdl.cmu.edu/ 23

• Thread cache and master shared

• Hash maps

• Each accessed by one thread

• Process cache

• Concurrent hash map

5: NUMA memory management

• NUMA effect in multi-socket machines

• Lower latency to access local memory

• Partition cache and master store structures

• Place each partition local to managing threads

Henggang Cui © October 14http://www.pdl.cmu.edu/ 24

Faster to access local memory

Socket-0

Mem

Cores

Socket-1

Mem

Cores
Master shard

Process cache

Socket-0 Socket-1

Experiment setup

• Cluster information

• 8 machines, each with 64 cores & 128GB RAM

• 64 application worker threads per machine

• Application benchmarks

• PageRank:

twitter-graph (40m nodes, 1.5b edges)twitter-graph (40m nodes, 1.5b edges)

• Collaborative Filtering:

netflix (480k-by-18k sparse matrix)

• Topic Modeling:

nytimes (100m tokens, 300k docs)

Henggang Cui © October 14http://www.pdl.cmu.edu/ 25

Overall performance: PR, 5 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 26

PageRank

Overall performance: PR, 5 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 27

PageRank 12x speed up on overall time,

50x speed up on per iteration time

Overall performance: PR, 5 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 28

PageRank Virtual-iter gathering performs

better than first-iter gathering

Overall performance: PR, 5 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 29

Faster than GraphLab even on PageRankPageRank

Overall performance: CF, 5 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 30

Collaborative Filtering More speed up over GraphLab

Overall performance: CF, 100 iters

Henggang Cui © October 14http://www.pdl.cmu.edu/ 31

Preprocessing time is amortized

over more iterations

Collaborative Filtering

Sensitivity to information accuracy

• Inaccurate information can be caused by

• Work migration

• Skipped work due to parameter convergence

• Experiment method

• Keep real operation sequences fixed

– Report more operations than performed

– Report less operations than performed

• Compare normalized time per iteration

– No inaccuracy as the baseline

Henggang Cui © October 14http://www.pdl.cmu.edu/ 32

Sensitivity to information accuracy
Report more operations than performed

• Can be caused by work migration or skipped work

Henggang Cui © October 14http://www.pdl.cmu.edu/ 33

All are insensitive to extra information

Sensitivity to information accuracy
Report less operations than performed

• Can be caused by work migration

Henggang Cui © October 14http://www.pdl.cmu.edu/ 34

CF and TM are insensitive to missing information

Conclusion

• Many ML applications exhibit iterativeness

• Same sequence of operations every iteration

• Systems can exploit repeated op sequences

• Speed up real ML benchmarks by up to 50x

• Two ways of gathering such operation sequence• Two ways of gathering such operation sequence

• Better performance when doing virtual iteration

Henggang Cui © October 14http://www.pdl.cmu.edu/ 35

References
• [Parameter Server] A. Ahmed, M. Aly, J. Gonzalez, S.

Narayanamurthy, and A. J. Smola. Scalable inference in latent

variable models. In WSDM, 2012.

• [LazyTable] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A.

Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A.

Gibson, and E. P. Xing. Exploiting bounded staleness to speed

up big data analytics. In USENIX ATC, 2014.

• [GraphLab] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. • [GraphLab] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C.

Guestrin. PowerGraph: Distributed graph-parallel computation

on natural graphs. In OSDI, 2012.

• [Nytimes] http: //archive.ics.uci.edu/ml/datasets/Bag+of+Words.

• [Twitter graph] H. Kwak, C. Lee, H. Park, and S. Moon. What is

twitter, a social network or a news media? In WWW, 2010.

Henggang Cui © October 14http://www.pdl.cmu.edu/ 36

