Exploiting iterative-ness for parallel ML computations

Henggang Cui

Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons (Intel), Garth A. Gibson, Eric P. Xing

PARALLEL DATA LABORATORY

Carnegie Mellon University

Carnegie Mellon Parallel Data Laboratory

One slide overview

- Iterativeness arises in some ML apps
 - Consequence: repeated data operation sequences
- Repeating pattern can be exploited
 - Detect with minor effort
 - Either in a real or a "virtual" iteration
 - Specialize structures and policies to known pattern
 - Data partitioning, prefetching, lock avoidance, pre-marshalled structures, etc.
- Next
 - Parallel machine learning
 - PageRank as one example

Parallel machine learning

Eg. a web graph

Eg. page ranks

Parallel machine learning

Parallel machine learning

Goal: improve performance by exploiting iterativeness

Example: PageRank

Input data: a set of links, stored locally Parameter data: ranks of pages, stored in parameter server

Example: PageRank

Input data: a set of links, stored locally Parameter data: ranks of pages, stored in parameter server

Repeated operation sequences

- Many examples of ML applications
 - Including Topic Modeling and Collaborative Filtering
- Knowledge of repeated operation sequence can be exploited to improve efficiency
 - 50x speed up for PageRank
- Talk outline
 - Ways to obtain per-iter operation sequences
 - Optimizations with pre-knowledge of operations
 - Experiment results

Obtain per-iter operation sequences

- Parameter server operations
 - READ
 - INC
 - CLOCK
 - Can be thought of as barrier
- Two ways of obtaining it
 - Gather in the first iteration
 - Gather in a "virtual iteration"

LOOP

READ page[2].rank
INC page[0].rank
READ page[1].rank
INC page[2].rank
CLOCK
WHILE NOT CONVERGE

Gather in the first iteration

// Original load_data() init_param_vals() do { do_iteration() } while (not stop) // Gather in first iter
load_data()
init_param_vals()
do {
 if (first iteration)
 ps.start_gather()
 do_iteration()
 if (first iteration)
 ps.finish_gather()
} while (not stop)

Carnegie Mellon Parallel Data Laboratory

Gather in the first iteration

+ Little programmer effort

• Only need to annotate iteration boundaries

- Considerable performance overhead
 - The first iteration runs without optimizations
 - More cost to apply the optimizations

 States from the first iteration need to be migrated

Gather in a virtual iteration

Just to remind you

```
// Gather in first iter
load_data()
init_param_vals()
do {
    if (first iteration)
        ps.start_gather()
    do_iteration()
    if (first iteration)
        ps.finish_gather()
} while (not stop)
```

```
// Gather in virtual iter
load_data()
ps.start_gather(virtual)
do_iteration()
ps.finish_gather()
init_param_vals()
do {
    do_iteration()
} while (not stop)
```

 Operations between start_gather(virtual) and finish_gather() are recorded but return *without any action. Nearly free.*

http://www.pdl.cmu.edu/

Gather in a virtual iteration

- Programmer needs to be more careful
 - do_iteration() needs to work with *virtual* READ/INC
 Computation must be independent of param value

+ Better performance

- No operations performed during virtual iteration
- No state migration
- All real iterations run at optimized speed

Optimizations on informed access

- Optimizations applied at finish_gather()
 - 1. Cross-machine parameter data placement
 - 2. Prefetching
 - 3. Static cache policies
 - 4. More efficient static data structures
 - 5. NUMA-aware memory management
- Prototyped on IterStore
 - A "parameter server library"
 - An improved version of LazyTable

Carnegie Mellon Parallel Data Laboratory

Machine

Machine

1: Parameter data placement

- Cross-machine parameter data placement
 - Store each row at the machine accessing it most
 - Balance the load for rows without clear affinity

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

2: Prefetching

- Prefetching
 - Prefetch to process cache at the beginning of clock
 - -Rows expected to be read in the clock
 - Fetched in a single message

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

3: Static cache policies

- Static cache policies
 - Decide rows to be cached based on access sequence
 - Cache rows with higher utilities
 - Never evict rows, no cache eviction overhead
 - Use a 2nd (dynamic) cache for items not in static cache

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

22

4: Static data structures

- Static hash map
 - Immutable index
 - No global lock needed for index concurrency
 - Entries stored in a contiguous block of memory
 - Can be sent in a single message without marshalling

- Thread cache and master shared
 - Hash maps
 - Each accessed by one thread
- Process cache
 - Concurrent hash map

Carnegie Mellon Parallel Data Laboratory

http://www.pdl.cmu.edu/

5: NUMA memory management

- NUMA effect in multi-socket machines
 - Lower latency to access local memory
- Partition cache and master store structures
 - Place each partition local to managing threads

Experiment setup

- Cluster information
 - 8 machines, each with 64 cores & 128GB RAM
 - 64 application worker threads per machine
- Application benchmarks
 - PageRank: twitter-graph (40m nodes, 1.5b edges)
 - Collaborative Filtering: netflix (480k-by-18k sparse matrix)
 - Topic Modeling: nytimes (100m tokens, 300k docs)

PageRank

Overall performance: CF, 100 iters

Sensitivity to information accuracy

- Inaccurate information can be caused by
 - Work migration
 - Skipped work due to parameter convergence
- Experiment method
 - Keep real operation sequences fixed
 - Report more operations than performed
 - Report less operations than performed
 - Compare normalized time per iteration
 - No inaccuracy as the baseline

Sensitivity to information accuracy

Report more operations than performed

• Can be caused by work migration or skipped work

Sensitivity to information accuracy

Report less operations than performed

• Can be caused by work migration

CF and TM are insensitive to missing information

Conclusion

- Many ML applications exhibit iterativeness
 - Same sequence of operations every iteration
- Systems can exploit repeated op sequences
 - Speed up real ML benchmarks by up to 50x
- Two ways of gathering such operation sequence
 - Better performance when doing virtual iteration

References

- [Parameter Server] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. In WSDM, 2012.
- [LazyTable] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting bounded staleness to speed up big data analytics. In USENIX ATC, 2014.
- **[GraphLab]** J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed graph-parallel computation on natural graphs. In OSDI, 2012.
- **[Nytimes]** http://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
- **[Twitter graph]** H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In WWW, 2010.